# Neurocognitive correlates of driving behavior Mary H. Kosmidis<sup>1</sup>, Alexandra Economou<sup>2</sup>, Athanasia Loisidou<sup>3</sup>, & George Yannis<sup>4</sup>



<sup>1</sup>Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki <sup>2</sup>Department of Psychology, University of Athens <sup>3</sup>Department of Neurology, "Attikon University General Hospital", University of Athens <sup>4</sup>Department of Transportation Planning and Engineering, National Technical University of Athens

## Objective

Driver distraction is a leading cause of motor vehicle accidents. We explored the association of particular neuropsychological measures to driving behaviors with respect to distraction, as potential predictors of driving errors.

## Method

### Participants

• 105 healthy community-dwelling participants , currently drivers (53 men); mean age=48.51 (SD=16.29; range=22-80)

### Procedure

- Participants drove in a simulator under four rural driving conditions:
- Driving variables:
  - lateral position of vehicle from the right-side road border (m)
  - average driving speed (km/h)
  - projected average time to collision with vehicle ahead (s)
  - sudden braking & speed violations (# of times for each)
- Neuropsychological measures:
  - processing speed (TMT-A)
- visuospatial perception (JLO)

Distractor

None

None

Conversation

Conversation

Traffic

Moderate

High

Moderate

High

- vigilance (Psychomotor Vigilance Test)
  visual memory (BVMT)
- visual working memory (Spatial Addition, NAB Driving Scenes)

### Results

Partial correlations (covariate: age) showed associations between:

- <u>vigilance</u> and driving variables in both moderate and high traffic conditions with distraction
- <u>processing speed</u> and driving variables in both high traffic conditions and in the moderate traffic with no distraction condition
- <u>visual working memory</u> and driving variables in both moderate and high traffic conditions with distraction and the moderate traffic no distraction condition
- visuospatial perception and driving in the high traffic distraction condition
- visual memory and driving variables in both moderate traffic conditions



#### Table 1. Correlations between neuropsychological measures and driving variables

| Driving variable                  | TMT-A          | BVMT                          | Spatial Addition               | JLO                           | Driving Scenes                | Vigilance      |
|-----------------------------------|----------------|-------------------------------|--------------------------------|-------------------------------|-------------------------------|----------------|
|                                   | 1000 6         |                               | Spatial Addition               | ,20                           | bring seenes                  | Therefore      |
| Moderate traffic – no distraction |                |                               |                                |                               |                               |                |
| Lateral position                  |                |                               |                                |                               |                               |                |
| Average speed                     | r=361, p=.005  |                               |                                |                               |                               |                |
| Proj. time to collision           | r=.327, p=.011 | <i>r</i> =243, <i>p</i> =.046 | r=343, p=.008                  |                               |                               |                |
| Sudden brake                      |                |                               |                                |                               |                               |                |
| Speed limit violation             |                |                               |                                |                               |                               |                |
| Moderate traffic – dist           |                |                               |                                |                               |                               |                |
| Lateral position                  |                |                               | r=.267, p=.032                 |                               | <i>r</i> =243, <i>p</i> =.046 |                |
| Average speed                     |                | r=.249, p=.042                |                                |                               |                               | r=245, p=.045  |
| Proj. time to collision           |                |                               | r=282, p=.025                  | <i>r</i> =310, <i>p</i> =.015 | r=253, p=.040                 |                |
| Sudden brake                      |                |                               |                                |                               |                               |                |
| Speed limit violation             |                |                               |                                |                               |                               |                |
| High traffic – no distraction     |                |                               |                                |                               |                               |                |
| Lateral position                  |                |                               |                                |                               |                               |                |
| Average speed                     | r=263, p=.034  |                               |                                |                               |                               |                |
| Proj. time to collision           |                |                               |                                |                               |                               |                |
| Sudden brake                      |                |                               |                                |                               |                               |                |
| Speed limit violation             | r=255, p=.039  |                               |                                |                               |                               |                |
| High traffic – distraction        |                |                               |                                |                               |                               |                |
| Lateral position                  |                |                               |                                | r=326, p=.011                 |                               | r=.267, p=.032 |
| Average speed                     |                |                               |                                |                               |                               |                |
| Proj. time to collision           |                |                               |                                |                               |                               | r=.240, p=.049 |
| Sudden brake                      | r=253, p=.040  |                               | <i>r</i> =.305, <i>p</i> =.017 |                               |                               |                |
| Speed limit violation             |                |                               |                                |                               | r=261, p=.035                 |                |

### Conclusions

Among the driving variables examined, average driving speed was related to several neuropsychological domains (processing speed, vigilance, visual memory) in most driving conditions. Similarly, projected time to collision was associated with several neuropsychological domains (processing speed, vigilance, visual memory and working memory, visual perception) in the moderate traffic condition regardless of distraction. Larger samples are necessary to support the reliability of this pattern, which may then serve as a guide in assessing the driving competence of individuals with cognitive impairment.

34th Annual Conference of the National Academy of Neuropsychology Fajardo, Puerto Rico, 12-15 November 2014