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ABSTRACT 1	
  
 2	
  
Global Navigation Satellite Systems (GNSS) have tremendous impact and potential in the 3	
  
development of Intelligent Transportation Systems (ITS) and mobility services, expected to 4	
  
deliver significant benefits including increasing capacity, improving safety and decreasing 5	
  
pollution. There are, however, situations where there might not be direct location information 6	
  
about the vehicles, such as in tunnels, but also in indoor facilities, such as parking garages and 7	
  
commercial vehicle depots. Various technologies can be used for vehicle localization in these 8	
  
cases, while other sensors, which are currently available in most modern smartphones, such as 9	
  
accelerometers and gyroscopes, can be used to directly obtain information about the driving 10	
  
patterns of the individual drivers. The use of multiple, diverse technologies for localization in 11	
  
the context of indoor and harsh environments has seen a lot of interest in the literature 12	
  
recently.  13	
  

The objective of this research is to present a framework for the vehicle localization 14	
  
and monitoring and modeling of driving behavior in indoor facilities, or –more generally– 15	
  
facilities where GNSS information is not available. A survey of localization technologies and 16	
  
needs is presented, leading to the description of the adopted methodology. The case studies, 17	
  
using data from multiple types of sensors (including accelerometers and gyroscopes from two 18	
  
smartphone platforms, as well as two reference platforms), provide evidence that the 19	
  
opportunistic smartphone sensors can be useful in identifying events (i.e. speed-humps) and 20	
  
maneuvers (i.e. u-turns and sharp-turns), which can be useful in positioning the vehicles in 21	
  
indoor environments, when cross-referenced with a digital map of the facility. At a more 22	
  
macroscopic level, a methodology is presented and applied to determine the optimal number 23	
  
of clusters for the drivers’ behavior, using a mix of suitable indices.  24	
  
 25	
  
 26	
  
Keywords: Intelligent Transportation Systems (ITS), localization, indoor facilities, 27	
  
smartphone sensors, accelerometers, gyroscopes, driver behavior classification 28	
  
 29	
  
 30	
  
  31	
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INTRODUCTION 1	
  
 2	
  
Intelligent Transportation Systems (ITS) such as Advanced Traveler Information Systems 3	
  
(ATIS) and Advanced Traffic Management Systems (ATMS) have matured over the past few 4	
  
decades and are now at a point where they can be easily applied to many different operational 5	
  
scenarios. One of the main technologies that have supported this development is localization 6	
  
technologies, such as Global Navigation Satellite Systems (GNSS) (1,2). GNSS have 7	
  
tremendous impact and potential in the development of ITS and mobility services, expected to 8	
  
deliver significant benefits including increasing capacity, improving safety and decreasing 9	
  
pollution (1). It is now, therefore, possible to start looking at more challenging scenarios, like 10	
  
situations where there might not be direct location information about the vehicles, e.g. based 11	
  
on GNSS. Such scenarios occur not only in special structures, such as tunnels, but also in 12	
  
indoor facilities, such as parking garages and commercial vehicle depots, while they might 13	
  
even occur in dense urban areas (the so-called urban canyon phenomenon). 14	
  

Most of these advanced systems rely on a simulation environment, which is initially 15	
  
calibrated based on available data (3). However, depending on the application, it may be 16	
  
needed to dynamically steer and adjust the operation of the model (4). Such functionality is 17	
  
supported by additional surveillance information, which becomes available from a multitude 18	
  
of sources. Depending on the nature of the tool, e.g. if it is aimed at planning/off-line or 19	
  
operational/real-time applications, the simulation model component may be microscopic, 20	
  
macroscopic, or mesoscopic (a combination of the two) (5). The data requirements of these 21	
  
models escalate along with the level of detail of the model, from macroscopic/mesoscopic 22	
  
towards microscopic models. In any case, in order to be able to monitor and adjust the 23	
  
performance of the model, a number of observations are needed, including: 24	
  

• Location and kinematics of vehicles; and 25	
  
• Traffic dynamics/driving patterns of drivers. 26	
  

Ideally, this information would be of high accuracy and available for all drivers/vehicles in 27	
  
the modeled environment. In reality, compromises need to be made. For example, there are 28	
  
technologies, such as point sensors (e.g. conventional loop detectors) that offer very limited 29	
  
information, but for the entirety of the vehicle population (assuming adequate number of 30	
  
sensors is positioned strategically in the network). Other technologies, such as IEEE 802.11 31	
  
fingerprinting/Bluetooth localization, offer finer information, i.e. can track the vehicle 32	
  
location, but with an accuracy of a few meters (Table 1). Other sensors, which are currently 33	
  
available in most modern smartphones, such as accelerometers and gyroscopes, can be used to 34	
  
directly obtain information about the driving patterns of the individual driver. This 35	
  
information can then be used to develop insight into the driving behavior of the driving 36	
  
population. For example, driving patterns along different terrains and network features could 37	
  
be developed, allowing the operator to identify abnormal driving behavior (for the specific 38	
  
conditions). Furthermore, under certain conditions, this information could be used to infer the 39	
  
location of the vehicle (e.g. by using signals to detect special features of the route, such as 40	
  
speed humps).   41	
  

Notwithstanding GNSS is a self-contained navigation system capable of providing 42	
  
absolute positions around the Earth and in all weather conditions, in areas prone to 43	
  
impertinent or difficult satellite signal reception it can fail. Such areas are usually found in the 44	
  
urban road environment, in tunnels and in large-scale, multi-storey parking facilities and 45	
  
depots, which are of particular interest in this study. In cases of limited satellite availability, 46	
  
various augmentation schemes are used to integrate additional information to provide viable 47	
  
location information. Such integration schemes rely either on differential GNSS (2), on 48	
  
external sensor systems (6), networked-assisted GNSS techniques (7), terrain-aided 49	
  
approaches (8) or even on a combination of them. Nevertheless, despite the fact that GNSS-50	
  
assisted systems can address successfully the positioning problem in many cases, the derived 51	
  
solution is highly influenced by the environment and operational scenario. Moreover, in the 52	
  
indoor environment, in which GNSS signal is entirely missing, other navigation solutions 53	
  
deem necessary. The use of multiple, diverse technologies for localization in the context of 54	
  
indoor and harsh environments has seen a lot of interest in the literature recently (9-12) and is 55	
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considered a critical source of accurate and reliable data for the applications considered in this 1	
  
research. 2	
  
 The objective of this research is to present a framework for the vehicle localization 3	
  
and monitoring and modeling of driving behavior in indoor facilities, or –more generally– 4	
  
facilities where GNSS information is not available. In the absence of GNSS traces, it becomes 5	
  
important to be able to locate the vehicles through other means. Several broad sources of 6	
  
information can be considered: 7	
  

• Point measurements of vehicle crossings (e.g. through conventional traffic counters); 8	
  
• Point-to-point measurements, e.g. information collected from Bluetooth sensors; 9	
  
• Localization of vehicles equipped with some other type of sensor, interacting with an 10	
  

access-point or other type of infrastructure; and 11	
  
• Sensors (such as accelerometers and gyroscopes) available on-board the vehicle or on 12	
  

nomadic devices (such as smartphones), providing information about the vehicle 13	
  
movement/dynamics, but not about its location directly.  14	
  

These types of information can be considered complementary, as none provides a complete 15	
  
picture of all the vehicles’ location and dynamics at any given time. Each provides a subset of 16	
  
information, that –when fused properly– can improve the ability of an information system to 17	
  
reconstruct the traffic state, which in turn could be used to develop and evaluate scenarios 18	
  
(e.g. in the case of emergency conditions). In this research, we focus on sensors from 19	
  
smartphones. 20	
  

The remainder of this paper is structured as follows. A survey of localization 21	
  
technologies and needs is presented next, leading to the description of the adopted 22	
  
methodology. The setup of the case studies, using data from multiple types of sensors, is 23	
  
presented next, followed by a preliminary analysis of the acquired data. An assessment of the 24	
  
positioning solution is performed next, followed by a presentation of the driver behavior 25	
  
classification analysis. A concluding section discusses the main findings and provides 26	
  
directions for further research. 27	
  
 28	
  
 29	
  
LOCALIZATION TECHNOLOGIES, NEEDS AND METHODOLOGY ADOPTED  30	
  
 31	
  
3D Positioning and Navigation of Vehicles for ITS 32	
  
Specifically, in indoor parking garages, depending on operational scenario, the navigation 33	
  
solution may involve GNSS to get initial location information near the entrance (or other spot 34	
  
of adequate satellite signal reception), which is then propagated in time using other navigation 35	
  
sources. Such positioning systems can be classified according to sensor technology (radio 36	
  
frequency, inertial, optical systems, etc.), the position fixing technique (time of arrival, round 37	
  
trip, time, Doppler ranging, etc.) or their performance metrics (accuracy, availability, 38	
  
integrity, etc.).  Table 1 gives an overview of the most commonly used positioning sensor 39	
  
technologies and their typical accuracy metrics (13,14). To ensure high accuracy and 40	
  
continuity in the positioning solution, multi-sensory approaches have been developed, in 41	
  
which the integration strategy primarily relies on the Kalman filter algorithm (15). This 42	
  
approach has recently been extended to the collaborative navigation concept, in which the 43	
  
vehicles represent the nodes of a network that can exchange information to obtain an 44	
  
improved navigation solution (16,17). 45	
  
 46	
  
  47	
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TABLE 1.   Commonly used sensor types for navigation support in ITS applications 1	
  
(adapted from (13)) 2	
  
 3	
  

 Sensor / technique Navigation 
information Typical accuracy 

Radio 
frequency 

(RF) 

GPS position 
GPS velocity 

X, Y, Z 
vx, vy, vz 

∼10 m (DGPS 1-3 m) 
∼0.05 m/s, ∼0.05 m/s, 

∼0.2 m/s 

pseudolites X, Y, Z 
vx, vy, vz 

comparable to GNSS 

UWB X, Y, Z dm-level 
IEEE 802.11 fingerprinting X, Y 3-5 m 

Bluetooth (e.g. BLE) X, Y 1-2 m 
RFID cell-based 
RFID fingerprinting 

X, Y 
X, Y 

depends on cell size 
1-3 m 

INS 
accelerometer atan, arad, az <0.03 m/s2 

gyroscope heading φ 0.5o-3o 

Optical 
systems 

Image-based X, Y, Z few meters 

optical sensor network X, Y, (Z 
optional) few meters 

laser X, Y, Z cm to dm 

Others 

digital compass/ 
magnetometer heading φ 0.5o-3o 

barometric pressure sensor Z 1-3 m 
temperature sensor T 0.2o-0.5o C 

  4	
  
In addition to an improvement of the position performance metrics, the need for low cost 5	
  
solutions has led to new data collection and processing approaches that make use of vehicle 6	
  
in-built sensor systems (18) and external user portable devices such as smart mobile phones 7	
  
and tablets (19). These devices are equipped with a wide range of sensors, from GNSS 8	
  
receivers through inertial sensors and magnetometers, and offer the possibility of collecting 9	
  
massive amount of information at low costs. Currently, extensive research is undertaken 10	
  
worldwide to study their performance characteristics and their potential for various ITS 11	
  
applications (20-22).  12	
  
 13	
  
 14	
  
Wireless Sensor Networks-Aided Indoor Positioning 15	
  
 16	
  
Indoor positioning systems usually employ wireless sensor networks infrastructures in order 17	
  
to obtain location information of the vehicles at a predefined coordinate system. The most 18	
  
important and common observation metrics that are used for the development of positioning 19	
  
systems are the Received Signal Strength (RSS), the Time of Arrival (TOA), the Time 20	
  
Difference of Arrival (TDOA), the Angle of Arrival, the Doppler Ranging, and the Phase of 21	
  
Arrival (23). This section is devoted to a general description of the operation of indoor 22	
  
positioning systems using wireless sensor networks. Furthermore, technical challenges and 23	
  
research issues on the implementation of wireless sensor networks-aided indoor parking 24	
  
positioning systems are discussed in the concluding section of the paper.   25	
  
 Indoor positioning algorithms are usually designed for specific wireless technologies 26	
  
of sensor networks. In the fingerprinting algorithms, the location of the mobile terminal is 27	
  
found by comparing a radiowave signal (usually affected by propagation phenomena), 28	
  
received by an access point, with a database of power values of the location under 29	
  

TRB 2015 Annual Meeting Paper revised from original submittal.



Antoniou, Gikas, Papathanasopoulou, Danezis, Panagopoulos, Markou, Efthymiou, Yannis and Perakis7 

	
   	
  

investigation. Fingerprinting algorithms include the well-known matching algorithms, k-1	
  
nearest neighbour, Kalman filter, and neural networks. These algorithms have very good 2	
  
behaviour, if we consider a stable radio propagation environment. The dynamic nature of the 3	
  
radio environment makes the employment of fingerprinting algorithms infeasible, and 4	
  
therefore triangulation algorithms are recommended.  5	
  
 Range-based positioning algorithms are categorized into deterministic and 6	
  
probabilistic models. The deterministic models try to minimize a simple sum of differences of 7	
  
the real measurements and the values in the databases. In the probabilistic models, the 8	
  
maximum likelihood estimator is employed and in the cases where the network has some 9	
  
knowledge of the mobile terminal’s position, the optimal estimator is the minimum square 10	
  
error. All these algorithms may use: 11	
  
- Mobile Terminal-based indoor positioning systems  12	
  
The position estimation is usually performed by scene analysis of signal strength 13	
  
characteristics.  14	
  
- Mobile Terminal-assisted indoor positioning system designs  15	
  
In order to make the load of the management smaller, there are solutions where the mobile 16	
  
terminals, the access points and some sniffers, which monitor the activity of the mobile 17	
  
terminals, cooperate in order to find the accurate location of the mobile terminals.  18	
  
- Indoor Positioning with beacons 19	
  
In wireless sensor networks, for some nodes, the system knows their exact position. These 20	
  
nodes are called beacons.  Performing positioning algorithms the mobile terminals’ location 21	
  
can be found using ranging or connectivity methods. The major challenge is to make efficient 22	
  
algorithms that use as few beacons as possible.  23	
  
- Indoor Positioning with moving beacons 24	
  
Another system design is the exploitation of moving beacons. Exploiting moving beacons, the 25	
  
whole system can become much more energy efficient. The relationship between mobility, 26	
  
navigation and positioning with mobile beacons has been studied in Galstyan et al. (24).  27	
  

 28	
  
Positioning Requirements in Parking Facilities and Monitoring Approach Adopted 29	
  
The choice of positioning technologies used to monitor vehicle kinematics depends on the 30	
  
operating environment, the type of motion and traffic modeling requirements. Vehicle motion 31	
  
in large-scale parking facilities and depots involves driving under geometry constraints 32	
  
realized usually by a grid corridor system, ramps and access to interactions. Also, vehicles 33	
  
normally operate at very low speeds, undertake parking maneuvers and in multi-storey 34	
  
facilities move between floors. Besides, modeling drivers’ behavior under emergency 35	
  
(stressful) conditions implies vehicle motion with abrupt changes in vehicle kinematics. 36	
  
 These driving conditions are closely associated with certain vehicle kinematic 37	
  
patterns, which by extension define sensor positioning characteristics. For instance, positions 38	
  
derived based on accelerometer measurements cannot be very reliable at slow speeds as such, 39	
  
whereas their distributions at a macroscopic view can be very useful indeed. Similarly, rapid 40	
  
changes in the vertical datum (such those encountered when moving between floors or driving 41	
  
through speed humps) can be detected using magnetometers. Notably, the same parameters 42	
  
can be detected from gyroscope (angular rate changes) measurements, in which case the latter 43	
  
can serve for validation purposes. 44	
  
 This study concentrates on testing the capabilities and potential of sensors found in 45	
  
common smart mobile phones. Particularly, it attempts an initial sensor capability 46	
  
characterization and driving behavior classification through studying patterns in the raw data 47	
  
distributions. Testing focuses on acceleration and gyroscope observations. To evaluate 48	
  
smartphone performance, a high and a tactical grade accuracy GNSS/IMU (Inertial 49	
  
Measurement Unit) system are collocated with test smartphones to allow comparisons 50	
  
between individual sensors.  51	
  
  52	
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CASE STUDIES SETUPS AND DATA ACQUISITION 1	
  
 2	
  
Two experiments were carried out at the National Technical University Athens (NTUA) 3	
  
campus, implementing two driving scenarios in mixed (outdoor / indoor) environments. At 4	
  
data pre-analysis stage, the main objectives were to: (a) assess the quality of the raw data 5	
  
recorded by all sensors, both indoors and outdoors, and (b) evaluate the ability of 6	
  
smartphones to detect specific driving events, typically encountered in operations within 7	
  
parking facilities. While the core objective of this research relates to indoor spaces, in these 8	
  
experiments we operate in a mixed indoor/outdoor environment. The main reason for this is 9	
  
that we exploit GNSS coverage to visualize the data (e.g. trajectories) and verify the accuracy 10	
  
of the opportunistic sensors that we use (e.g. smartphone sensors) against the higher accuracy 11	
  
equipment. Another reason for this is that the environments of interest sometimes offer partial 12	
  
GNSS coverage (e.g. accesses to parking facilities or depots, or open areas in an 13	
  
predominantly covered facility). In any case, specific care is given to ensure that no 14	
  
information, that would otherwise not be available in an indoor environment, is used in the 15	
  
core parts of the procedure. 16	
  

Moreover, the navigation data obtained from all sensors were grouped separately for 17	
  
the along-track, lateral and vertical directions to study individual phenomena pertaining to 18	
  
certain types of motion, such as stressful driving (associated with sudden changes in x, y-19	
  
acceleration) and the detection of traffic humps (associated with changes in z-acceleration).  20	
  
Finally, in an attempt to detect and identify driver profile characteristics (e.g. aggressiveness) 21	
  
each experiment was conducted employing different drivers. In the interest of space economy, 22	
  
the setup of the two experiments is presented in parallel next and some aspects are not fully 23	
  
described.  24	
  
 25	
  
Field tests’ setup 26	
  
 27	
  
The objective of the first, preliminary experiment (NTUA-1) was to assess the quality of raw 28	
  
acceleration data obtained by smartphones and their potential for use in traffic simulation 29	
  
models.  Data collection was carried out in March 27, 2014, driving a total distance of about 30	
  
2.5 km long for a time span of 12 min. The traveled path included a small indoor parking 31	
  
facility and segments with open spaces (Figure 1(a)). Data acquisition was performed using 32	
  
two contemporary smartphone units: an Apple iPhone 5 and a HTC One S. Also, a NovAtel 33	
  
SPAN® system consisting of a geodetic grade GNSS receiver (NovAtel ProPak-V3™) and a 34	
  
tactical grade IMU (iMAR IMU-FSAS™) was employed to provide the vehicle’s reference 35	
  
trajectory. The latter offers a nominal RMS acceleration accuracy of ±0.03m/s2. 36	
  
 Driving speed range was constrained to normal city driving speeds, whereas higher 37	
  
acceleration / deceleration values were pursued at straight segments. All sensors were 38	
  
collocated, aligned to the vehicle body frame and fixed onboard an on-purpose built platform 39	
  
on the vehicle roof. Sensor settlement is illustrated in Figure 1(c); note that the XSENS 40	
  
(situated in the top left of this subfigure) was not present in this experiment. Sensor relative 41	
  
positions with respect to the reference IMU were accurately determined by means of a 42	
  
dimensional survey. In the case of smartphones, data acquisition was performed using third-43	
  
party software (mobile apps). Namely, SensorLog and IMU+GPS-Stream apps enabled the 44	
  
iPhone 5 (iOS7) and the HTC One S (Android 4.4.1) to record acceleration readings at 10Hz 45	
  
and 65Hz respectively. It is noted that the XSENS system was not present in this first field 46	
  
test. The events and scenarios simulated along the traveled path were documented and 47	
  
illustrated in Table 2(a). 48	
  
 The second experiment (NTUA-2) took place in June 12, 2014. This experiment 49	
  
aimed both at collecting a relatively larger dataset, as well as at processing additional 50	
  
observable types, namely vehicle angular velocities (gyro measurements). The traveled 51	
  
trajectory included discrete scenarios, such as performing a limited number of parking 52	
  
maneuvers outdoors and indoors, simulation of aggressive and stressful conditions and 53	
  
driving a ramp inside a parking garage upwards and downwards. Furthermore, attention was 54	
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paid so that the test vehicle traveled at relatively long periods in closed spaces to realize the 1	
  
indoor environment. Data were acquired driving a total distance of approximately 4.4 km 2	
  
spanning a time period of 20 min (Figure 1(b)). In addition to the NovAtel SPAN® system, a 3	
  
high-quality GPS/IMU system (XSENS MTi-G-700) was used to provide a combined output 4	
  
of acceleration, angular velocity, attitude and heading readings at a sampling rate 400 Hz. The 5	
  
MTi-G-700 was positioned onboard the same platform used in the preliminary experiment, as 6	
  
seen in the top left of Figure 1(c).  In terms of smartphone data collection, both the iPhone 5 7	
  
and the HTC One S logged acceleration, gyro, attitude and heading readings, using the 8	
  
SensorLog software operating at 10 Hz. The events of specific interest were logged manually 9	
  
and outlined in Table 2(b). 10	
  
 11	
  

 

(a) NTUA-1 

 
(b) NTUA-2 

  
(c) Sensor colocation diagram 

 12	
  
FIGURE 1: Field test trajectories (from NovAtel SPAN®: (a) NTUA-1, (b) NTUA-2) 13	
  
and (c) sensor colocation diagram (XSENS sensor, in the top-left, only used in NTUA-2) 14	
  
  15	
  

TRB 2015 Annual Meeting Paper revised from original submittal.



Antoniou, Gikas, Papathanasopoulou, Danezis, Panagopoulos, Markou, Efthymiou, Yannis and Perakis10 

	
   	
  

 1	
  
TABLE 2. Event documentation for field tests: (a) NTUA-1, (b) NTUA-2 2	
  

Event type (NTUA-1) 
start time 
(h:m:s) 

end time 
(h:m:s) 

duration 
(h:m:s) 

speed hump 1 15:07:47 15:07:48 0:00:01 
speed hump 2 15:07:59 15:08:00 0:00:01 
speed hump 3 15:08:15 15:08:16 0:00:01 
speed hump 4 15:08:28 15:08:29 0:00:01 
abrupt acceleration and deceleration 15:08:41 15:09:29 0:00:48 
maneuvers 15:10:33 15:11:00 0:00:27 
indoor ramp (upward direction) 15:12:32 15:12:43 0:00:11 
uphill (upward direction) 15:13:04 15:13:25 0:00:21 

(a) Events of interest during experiment NTUA-1 3	
  
 4	
  

Event type (NTUA-2) 
start time 
(h:m:s) 

end time 
(h:m:s) 

duration 
(h:m:s) 

parking in open space  15:21:41 15:21:59 0:00:18 
maneuvers 15:21:59 15:22:42 0:00:43 
speed hump 1 15:22:43 15:22:44 0:00:01 
speed hump 2 15:22:57 15:22:58 0:00:01 
speed hump 3 15:23:17 15:23:18 0:00:01 
speed hump 4 15:23:33 15:23:35 0:00:02 
closed space (entrance/exit) 15:24:10 15:24:26 0:00:16 
parking in open space (administration) 15:24:32 15:24:58 0:00:26 
closed parking space (entrance) 15:25:03 -- -- 
parking in closed space 15:25:11 15:25:35 0:00:24 
closed ramp (driving upwards) 15:25:57 15:26:04 0:00:07 
closed space (exit) 15:26:04 -- -- 
alignment (acceleration & deceleration) 15:27:14 15:28:38 0:01:24 
closed turn 15:28:38 15:28:41 0:00:03 
closed parking space (entrance) 15:29:09 -- -- 
parking in closed space 15:29:30 15:29:49 0:00:19 
closed ramp (driving upwards) 15:30:30 15:30:38 0:00:08 
maneuver in closed space 15:31:12 15:31:24 0:00:12 
closed ramp (driving upwards) 15:31:24 15:31:29 0:00:05 
speed hump 5 15:32:22 15:32:23 0:00:01 
speed hump 6 15:32:37 15:32:38 0:00:01 
speed hump 7 15:33:32 15:33:33 0:00:01 
speed hump 8 15:33:44 15:33:45 0:00:01 

(b) Events of interest during experiment NTUA-2 5	
  
 6	
  

 7	
  
ASSESSMENT OF NAVIGATION SOLUTION  8	
  
 9	
  
Raw data acquisition from smartphone navigation sensors of variant characteristics is not a 10	
  
trivial task. This is because datasets include raw observables of a multitude of sensors 11	
  
collected at different time spans and different sampling rates. Furthermore, the performance 12	
  
of data collection apps depends heavily on smartphone hardware (e.g. CPU, RAM, storage) 13	
  
and operating system specifications. Also, system or user services that run concurrently in the 14	
  
background may cause extra performance penalties and raise latency issues that may result 15	
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even to temporary lack of app responsiveness. Latency in data time-stamping will cause time 1	
  
drifts, which in turn may severely affect the microscopic analysis of sensor readings and 2	
  
potentially influence their distribution characteristics at a more macroscopic scale.  Ergo, data 3	
  
resampling and synchronization were addressed prior to data analysis. Initially, all sensor 4	
  
records were resampled to 10Hz, the lowest sampling rate amongst the sensors used. To 5	
  
achieve sensor synchronization and mitigate potential drifts, all datasets were cross-compared 6	
  
with the reference dataset obtained using the NovAtel SPAN® system. 7	
  
 8	
  
Navigation Data Assessment 9	
  
 10	
  
NTUA-1: The standardized dataset comprises 7311 records per sensor corresponding to a 11	
  
time span of 12 min (15:01:30 – 15:13:41). Table 3(a) shows the acceleration statistics 12	
  
computed for all recording devices. Clearly, a relatively good agreement among all units is 13	
  
evident. However, a significant (132%) difference was observed in the standard deviation 14	
  
obtained for the HTC One S (±1.35m/s2) and the SPAN system (±0.58m/s2) in the vertical 15	
  
axis. Time-series analysis of HTC One S acceleration values revealed spikes at irregularly-16	
  
spaced times in all three components. This phenomenon is more evident in the z-acc 17	
  
(acceleration across the z-axis) component, contributing to a higher standard deviation value. 18	
  
In effect, it appears that z-acc takes instantly a near zero value that immediately afterwards 19	
  
drops to its normal level. This bias is unique to the HTC One S smartphone and is attributed 20	
  
to data collection software issues, suggesting that data acquisition software can be critical for 21	
  
further analysis. This issue was resolved for the subsequent experiments, including NTUA-2 22	
  
below. 23	
  
 24	
  
NTUA-2: In total, 11951 epochs of data per sensor were processed spanning a time period of 25	
  
20 min (18:16:50 – 18:36:45). Table 3(b) shows the acceleration statistics obtained for all 26	
  
sensors.  Similarly to NTUA-1, test smartphone devices generally agree with the SPAN 27	
  
system. Besides, the HTC One S shows a more consistent logging behavior compared to the 28	
  
previous experiment, which is attributed to the change of data acquisition software (i.e., 29	
  
SensorLog from IMU+GPS-Stream). One thing to note is the difference (118%) found 30	
  
between the standard deviation of the XSENS z-acc (±0.83 m/s2) and its corresponding value 31	
  
for the reference sample (±0.38 m/s2).  This is potentially due to the ability of XSENS to log 32	
  
readings on a wider acceleration range (±15 g) compared to other sensors (up to ±5 g). A 33	
  
noticeable difference (26%) can also be seen for the case of the x-acc. 34	
  
 35	
  
Table 3(c) includes the statistics obtained for the angular velocity measurements for all 36	
  
sensors. In a similar manner to accelerations, smartphone-derived gyro measurements 37	
  
generally agree with the higher quality XSENS and SPAN observables. However, iPhone 38	
  
readings deviate from other units resulting into significant difference from SPAN in the mean 39	
  
x- and z-gyro values. Interestingly, no significant differences are observed in the 40	
  
corresponding standard deviations and max / min values, suggesting a bias in the iPhone 41	
  
measurements, the source of which remains undetected. 42	
  
 43	
  
  44	
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 1	
  
TABLE 3. Statistics of collected data (accelerations and angular speeds) 2	
  

device 
x-acc y-acc z-acc 

min max mean σ min max mean σ Min max mean σ 
Apple iPhone 5 -6.66 4.45 0.63 0.98 -6.31 8.48 0.14 1.18 -26.50 -4.71 -9.81 0.57 
HTC One S -6.91 4.62 0.57 1.01 -5.89 5.90 -0.23 0.96 -15.24 0.00 -9.51 1.35 
NovAtel SPAN -6.87 8.21 0.61 1.05 -6.58 7.24 -0.16 1.01 -16.80 -0.33 -9.77 0.58 

(a) NTUA-1 accelerations (m/s2)	
  

 3	
  

sensor 
x-acc y-acc z-acc 

min max mean σ min max mean σ min max mean σ 
Apple iPhone 5 -3.91 5.12 -0.28 0.72 -4.03 6.84 0.28 0.93 -13.12 -7.41 -9.88 0.32 
HTC One S -4.90 6.97 0.13 0.77 -4.08 7.25 0.39 0.96 -14.46 -4.85 -9.73 0.39 
XSENS -6.26 7.26 -0.13 0.95 -4.68 7.46 0.21 1.00 -21.00 -3.12 -9.81 0.83 
NovAtel SPAN -4.70 5.52 0.04 0.75 -4.08 7.05 0.24 0.94 -14.17 -3.73 -9.79 0.38 

(b) NTUA-2 accelerations (m/s2) 
 4	
  

device 
x-gyro y-gyro z-gyro 

min max mean σ min max mean σ min max mean σ 

Apple iPhone 5 -14.61 19.89 1.91 1.69 -10.24 15.32 -0.10 1.15 -38.27 41.31 -1.20 8.97 

HTC One S -20.02 15.83 0.04 1.87 -15.40 14.18 0.03 1.32 -37.13 42.76 -0.15 9.05 

XSENS -24.73 21.38 -0.10 2.16 -20.36 18.83 0.01 2.07 -37.93 43.87 -0.13 9.17 

NovAtel SPAN -20.89 16.27 0.00 2.03 -15.98 16.75 0.02 1.60 -36.36 41.79 -0.15 8.90 

(c) Angular velocity data for NTUA-2 test (deg/s) 
 5	
  
 6	
  
Microscopic analysis  7	
  
 8	
  
In brief, all devices involved in the test successfully detected all events. For instance, in order 9	
  
to assess the ability of smartphones to detect speed humps, their locations were marked (red 10	
  
frames) on the z-acc plots as shown in Figure 2(a) based on their time logs (Table 2(a)).  11	
  
Clearly, visible changes of acceleration values of an abrupt character are observed for all 12	
  
recording devices and for all four speed hump locations. Notably, the excessive noise in the 13	
  
SPAN data is due to unsmoothed observables. 14	
  
  15	
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 1	
  
(a) NTUA-1: Speed hump detection example based on z-acc measurements (spikes in the 2	
  

bottom/HTC One S subfigure are due to the logging issue discussed in the text, and resolved 3	
  
for NTUA-2) 4	
  

 5	
  

 6	
  
(b) NTUA-2: Smartphone z-gyro sensor readings for a subset of NTUA-2 test 7	
  

 8	
  
FIGURE 2. Interpretation of sensor data 9	
  
 10	
  
  11	
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Regarding analyzing driving scenarios of particular interest, a case of steep turn and 1	
  
U-turn maneuvers are considered in this study (Figure 2(b)). The selected section includes 2	
  
two U-turn maneuvers (area 1 and 2) and a steep left turn (area 3). The two U-turn maneuvers 3	
  
were driven deliberately at different speeds; the first one (area 1) in a faster pace compared to 4	
  
the second one (area 2).  From Figure 2(b) it is apparent that all devices detected clearly these 5	
  
events. The considerably shorter time length of the first maneuver compared to the second 6	
  
one indicates a faster change in the heading component. During a U-turn maneuver the 7	
  
vehicle’s heading changes by 180o. This fact is also recognized in the data since the angular 8	
  
velocity sign changes from positive to negative (area 1) and vise-versa (area 2). 9	
  
 10	
  
DRIVER BEHAVIOR CLASSIFICATION ANALYSIS  11	
  
 12	
  
We now turn our attention to a more macroscopic analysis of the driver behavior, through 13	
  
clustering of the data. The k-means algorithm (25,26) was used; however, this algorithm does 14	
  
not provide a way to determine the optimal number of clusters. In order to determine the 15	
  
optimal clustering, we considered a number of indices, with the help of the recently 16	
  
developed package “ClusterCrit” (27), within the R software for statistical computing (28). 17	
  
The ClusterCrit package provides the calculation of several so-called internal and external 18	
  
indices. Internal indices provide insight supporting the choice of the optimal number of 19	
  
clusters. On the other hand, external indices measure the similarity between two partitions, 20	
  
mainly two clustering alternatives, taking into account only the distribution of the data in the 21	
  
different clusters. Therefore, the larger the value of the index, the more similar two clustering 22	
  
results are. 23	
  

 Figure 3(a) presents the number of clusters determined as optimal by each internal 24	
  
index (27). The Calinski Harabasz is the least sensitive of the indices considered. While the 25	
  
process does not converge to a single optimal number of clusters, it is very likely that the 26	
  
range of clusters for this application and these datasets is in the range between 3 and 5. The 27	
  
sensitivity of the results to the number of clusters is shown in Figure 3(c). Different decision 28	
  
rules apply to each index. The decision rule “max” corresponds to the greatest index value, 29	
  
while the decision rule called “max diff” correspond to the greatest difference between two 30	
  
successive slopes, i.e. to the “elbow” in the curve.  31	
  

External indices were then applied to the data series in order to compare the 32	
  
clustering results between 3 and 5 clusters (Table 3(b)). The general concept is that the 33	
  
indices measure the degree to which points move across clusters, as the number of clusters 34	
  
increases. For instance, the Fowlkes–Mallows index could be evaluated based on the number 35	
  
of points that are common or uncommon in the two hierarchical clustering options. We may 36	
  
conclude that for NTUA-2, and especially for the richer information case including gyros, the 37	
  
clustering between 3 and 5 clusters seem to be more similar. This could be explained by the 38	
  
fact that more data may allow a more accurate clustering, even with 3 clusters.  39	
  
 In order to develop deeper insight into the clustering results, clustering results for 3 40	
  
and 5 clusters are presented in Figure 4. Z-axis acceleration is not presented, as there was no 41	
  
distinct differentiation in them. Several observations can be made: 42	
  

• Clusters that overlap in terms of x-acc, are differentiated by y-acc (and vice versa); 43	
  
• Gyros help distinguish the clusters in terms of x-acc, but lead to more overlap in y-44	
  

acc; 45	
  
• Clustering with 5 clusters is crisper than with 3 clusters;  46	
  
• NTUA-2 results in a better clustering in y-acc. This is due to the fact that NTUA-1 47	
  

includes essentially only left turns. 48	
  
 49	
  
  50	
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Internal Index Optimal number of clusters 
NTUA-

1 
NTUA-2 

(no gyros) 
NTUA-2 

Ratkowsky_Lance 
(rule: max) 

3 3 3 

Dunn 
(rule: max) 

5 5 3 

Calinski_Harabasz 
(rule: max) 

5* 2* 5 / 3 

Log_det_ratio 
(rule: max diff) 

4 5 3 
 

External Index 

Comparison of partitions 

NTUA-1 
NTUA-2 

(no gyros) NTUA-2 
czekanowski_dice 0.48 0.59 0.85 

fowlkes_mallows 0.49 0.60 0.86 

jaccard 0.32 0.42 0.74 
kulczynski 0.52 0.60 0.87 
precision 0.64 0.69 0.98 
rand 0.67 0.75 0.83 
recall 0.39 0.52 0.75 
rogers_tanimoto 0.41 0.53 0.57 
russel_rao 0.15 0.18 0.49 
sokal_sneath1 0.14 0.21 0.43 
sokal_sneath2 0.74 0.82 0.84 

 

(a) Choice of the optimal number of clusters 
according to internal indexes 

*not sensitive 

(b) Comparison of partitions (3 and 5 clusters)	
  

  

  
Ratkowsky_Lance	
   Dunn	
  

  
Calinski_Harabasz (first two data-series on first y-

axis, third data series on secondary y-axis)	
  
Log_det_ratio	
  

(c) Visual presentation of sensitivity of internal indices to number of clusters  1	
  
FIGURE 3. Internal and external indices for determination of optimal number 2	
  

of clusters 3	
  
 4	
  
  5	
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FIGURE 4. Clustering results for 3 and 5 clusters 2	
  

	
  3	
  
 4	
  
DISCUSSION AND FUTURE WORK 5	
  
 6	
  
ITS applications are taking an increasing role in traffic management. Traffic simulation, a 7	
  
mature field with several decades of development, is playing a key role in these 8	
  
developments. While some aspects can be assumed to be at a level, where most challenges 9	
  
have been overcome, there are still aspects that remain unsolved. For example, traffic 10	
  
simulation of mixed networks at conditions close to or exceeding capacity are still a 11	
  
challenging endeavor. Similarly, modeling low-speed traffic is also a challenging task (often 12	
  
leading to underestimation of the capacity), while parking maneuvers and their impact on the 13	
  
following/opposing vehicles (see e.g. (29)) are aspects, in which modeling can be improved.  14	
  

Simulation of indoor environments, such as those considered in this research, requires 15	
  
challenging aspects of modeling vehicle operation at a microscopic scale in parking facilities, 16	
  
which combine a number of restrictions along the state-of-the-art of traffic modeling and 17	
  
simulation, i.e. complex geometry, congested conditions, and very low speeds. It is possible 18	
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that gap-acceptance and merging models that are formulated/estimated for general traffic will 1	
  
perform poorly, when applied to modeling traffic facilities. Flexible, data driven models (e.g. 2	
  
30,31) are not bound by rigid functional forms and limits in the data that they can exploit, and 3	
  
therefore may be more suitable to the application of such situations. 4	
  

Behavioral aspects and the impact of stressful driving conditions are also of interest 5	
  
in this context. Other aspects, such as privacy aspects and the willingness of the travelers to 6	
  
partly relinquish it in exchange for better services (32, 33) are also relevant, as often the 7	
  
technical solutions are available, but acceptance is limited.  8	
  
The absence of direct GNSS coverage in these applications, means that innovative approaches 9	
  
may be employed to the localization of the vehicles. For example, detection of speed humps 10	
  
and maneuvers, such as u-turns/sharp turns, can be useful in this direction, as they could be 11	
  
then cross referenced with digital maps of the facilities to estimate the possible location of the 12	
  
vehicle. Furthermore, specific patterns on the z-axis acceleration could also be used to relate 13	
  
vehicle maneuvers to ramps between floors. Combinations of such events can increase the 14	
  
confidence with which the localization of the vehicles; furthermore, low speeds within the 15	
  
facilities of interest in this research reduce the problem complexity.  16	
  
 Finally, in this research we have focused on smartphones sensors; exploiting radio 17	
  
sensors is another interesting direction for localization under these conditions. It is, however, 18	
  
important to recognize that the indoor parking radio environment is very different from other 19	
  
indoor environments and prerequisite for the design for a successful positioning application is 20	
  
the identification of an optimal trade-off between reliability and complexity. There are many 21	
  
practical challenges that need to be addressed by industry and academia in this field. Here we 22	
  
briefly present some of them: 23	
  

• Mobile terminal related measurements: there is heterogeneity of the wireless cards of 24	
  
the mobile terminals and consequently there are differences in the estimated values of 25	
  
RSS and biases in the whole procedure of indoor positioning. 26	
  

• Wireless-link related measurements: there is time-varying nature of the wireless 27	
  
channel introduced as a result of the motion of the vehicles, the humans, the fact the 28	
  
mobile terminal is inside the vehicle, etc. Another problem is the channel dispersion 29	
  
of the signal that is caused by various effects of propagation especially in the time 30	
  
and frequency domains.  31	
  

• Different frequency bands of the wireless technologies, the various technologies 32	
  
operate in many frequency bands (2.4GHz, 5.2GHz, 5.8GHz, 28GHz, 60GHz, etc.) 33	
  
that confront different propagation phenomena. 34	
  

• Optimum placement of the access points: it strongly depends on the indoor 35	
  
environment, the building materials, the number of vehicles, the walls, the floors, etc. 36	
  
It is important in order to optimize the coverage and the connectivity of the access 37	
  
points. 38	
  

• Usage of multiple antennas and multi-node technologies: large-scale MIMO 39	
  
(multiple-input and multiple-output) techniques will increase the accuracy of the 40	
  
indoor positioning system. However, their deployment in current systems will also 41	
  
increase the complexity.  42	
  

 43	
  
 44	
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