Road, traffic and human factors of pedestrian crossing behaviour: Integrated Choice and Latent Variables models

Eleonora Papadimitriou¹, Sylvain Lassarre², George Yannis¹, Dimitrios Tselentis¹

¹Department of Transportation Planning and Engineering, National Technical University of Athens, Athens, Greece ² IFSTTAR - French Institute of Science and Technology for Transport, Development and Networks, France

Background

- Modelling pedestrian crossing behaviour
 - better understanding of the interaction between pedestrians and the road and traffic environment
 - better design and management of urban networks
- Models on road and traffic factors
 - Gap acceptance
 - Level of service
 - Discrete choice
- Analyses of human factors (psychological, attitudinal, perceptual, motivational)
- Human factors are rarely incorporated in pedestrian behavior models

Objectives

- To develop choice models of pedestrian crossing behavior, integrating the effect of human factors (i.e. pedestrian attitudes, perceptions, motivations and behavior) together with road and traffic factors
- Analyse data from a survey combining field observations with questionnaire responses
- Develop Integrated Choice and Latent
 Variables models (ICVL)

Methodology

- A two-step approach
 - I. human factors calculated by means of Principal Component Analysis on questionnaire responses
 - II. factors introduced as explanatory variables in crossing choice models
 - Tested in Papadimitriou et al. (2015)
 - Known limitations: risk of measurement errors
- ICLV: merging classic choice models with the structural equation approach for latent variables
- Used in the fields of transport economics, activity planning and transport mode choice

ICLV model

- Latent variables model
- Structural equations
- $Z_{1n} = \alpha_1 W_{in} + \omega_{1n}$
- $Z_{2n} = \alpha_2 W_{in} + \omega_{2n}$
- Measurement equations
- $I_{1n} = \lambda_1 Z_{1n} + v_{1n}$
- $I_{2n} = \lambda_2 Z_{1n} + v_{2n}$
- $I_{3n} = \lambda_3 Z_{2n} + v_{3n}$
- $I_{4n} = \lambda_4 Z_{2n} + v_{4n}$
- *I_{in}* are discrete ordered

$$I_{i} = log\left(\frac{\gamma_{i}}{I - \gamma_{i}}\right) = log\left(\frac{Pr(y_{i} \ge i)}{Pr(y_{i} < i)}\right)$$
$$\gamma_{ij} = Prob(y_{ij} \ge i) = \sum_{i}^{I} \pi_{ij}$$

- <u>Choice model</u>
- Structural equations
- $U_{in} = b' X_{in} + b_1 \tilde{Z}_{1n} + b_2 \tilde{Z}_{2n} + \varepsilon_{in}$
- $U_{jn} = b' X_{jn} + \varepsilon_{jn}$
- Measurement equation

$$y_n = \begin{cases} 1, if \ U_{in} > U_{jn} \\ 0, otherwise \end{cases}$$

- U_{in} , U_{jn} the utility of each alternative for individual n;
- X_{in}, X_{jn} sets of observed variables;
- Z_{1n}, Z_{2n} the latent variables;
- $I_{1n}, I_{2n}, I_{3n}, I_{4n}$ sets of the indicators of the latent variables Z_{1n}, Z_{2n} ;
- $\tilde{Z}_{1n}, \tilde{Z}_{2n}$ the fitted values of the latent variables, once estimated by the structural equations of the latent variable model;
- W_{1n} , W_{2n} sets of observed variables (characteristics of respondent *n*);
- $\varepsilon_{in}, \varepsilon_{jn}$ extreme value distributed errors; $\omega_{1n}, \omega_{2n}, v_{1n}, v_{2n}, v_{3n}, v_{4n}$ sets of (multivariate normally distributed) errors;
- $b', b_1, b_2, \alpha_1, \alpha_2, \lambda_1, \lambda_2, \lambda_3, \lambda_4$ unknown parameters to be estimated.

Field survey design

- A trip in the Athens city center, Greece
- From Kolonaki square to Evangelismos metro station and back
- Four walking conditions
 - Major urban arterial
 - Main road
 - Secondary road
 - Minor / residential road
- Eight walking scenarios
- Eight "primary" crossings

Questionnaire design

	How many times per week do you travel by each one of the following modes*:	4	
	Public transport (metro, bus, trolley bus, tramway)	D	Compared to other pedestrians, how much do you agree that***:
_	Pedestrian	Di	I am less likely to be involved in a road crash than other pedestrians
	Passenger car (driver or passenger)	D_ii	I am faster than other pedestrians
	Last week, now many knometers and you travel by each one of the following modes:	D_iii	I am more careful than other pedestrians
	Passenger car (driver or passenger)	E	As a pedestrian, how often do you adopt each one of the following behaviors****:
B2_ii	Pedestrian	-	
B2_iii	Public transport (metro, bus, troney bus, transway)	E1_i.	I cross diagonally
	As a dedestrian, now much would you adree with each one of the following statements .	E1_ii	I cross at midblock at major urban arterials
B3_i.	I walk for the pleasure of it	E1_iii	I cross at midblock at urban roads
B3_ii	I WAIK DECAUSE IT IS HEATTING	E1_iv	l cross at midblock in residential areas
B3 iii	In short trips, I prefer to walk	E1_v	l cross at midblock when I am in a hurry
B3_iv	I prefer taking public transportation (buses, metro, tramway, etc.) than my car	E1_vi	I cross at midblock when there is no oncoming traffic
B3_iv	I walk because I have no other choice	E1_vii	I cross at midblock when I see other people do it
	As a pedestrial, now much would you agree with each one of the following statements .	E1_viii	I cross at midblock when my company prompts me to do it
	Crossing roads is difficult	E1_ix	I prompt my company to cross at midblock
_		E1_x	I cross at midblock when there is a shop I like on the other side
_		E1_xi	I cross even though the pedestrian light is red
		E1_xii	I walk on the pavement rather than on the sidewalk
	Crossing roads outside designated locations is acceptable because other people do it	E2_i	I cross between vehicles stopped on the roadway in traffic jams
C2_i		E2_ii	I cross without paying attention to traffic
		E2_iii	l am absent-minded while walking
		E2_iv	I cross while talking on my cell phone or listing to music on my headphones
C2_iv		E2_v	I cross even though obstacles (parked vehicles, buildings, trees, etc.) obstruct visibility
C2_v		E2_vi	I cross even though there are oncoming vehicles
C2_vi	I am willing to make a detour to find a protected crossing	F	As a pedestrian, how much would you agree with each one of the following statements***:
		F1_i	Drivers are not respectful to pedestrians
		_	Drivers drive too fast
		F1_iii	Drivers are aggressive and careless
	· · · · · · · · · · · · · · · · · · ·		Drivers should always give way to pedestrians
	· · · · · · · · · · · · · · · · · · ·		When there is an accident, it is the driver's fault most of the times
	· · · · · · · · · · · · · · · · · · ·	F1 vi	I let a car go by, even if I have right-of-way
4	· · · · · · · · · · · · · · · · · · ·		

* (1:never, 2: less than once a week, 3:once a week, 4: more than once a week, 5:every day) ** (1:1-2 km, 2: 3-5 km, 3:5-20 km, 4: 20-50 km, 5: >50 km) *** (1:strongly disagree, 2: disagree, 3:neither agree nor disagree, 4: agree, 5:strongly agree) **** (1:never, 2: rarely, 3:sometimes, 4: often, 5:always)

Survey procedures

- July December 2013
- 75 participants in total
- 53% were males
- 50% were 18-24 years old, 27% were 25-34, 20% were 35-45 and 3% were >45 years old.
- Half of the participants carried out the field experiment after filling in the questionnaire, and half of the participants the other way around
- A trained researcher followed them at a distance of approximately 35 meters and recorded data on each road link by filling-in a form.
 - Static data: road environment, traffic control, obstacles
 - Dynamic data: pedestrian speed, crossing behavior, traffic flow

Models development

- A probabilistic discrete choice in determining the location of each primary crossing of each scenario
- Sequential choice model
 - Cross at mid-block
 - Cross at junction
 - No crossing
- Exploratory analysis
- A global model for all scenarios unfeasible
- Testing different scenarios separately

Models for main urban roads (1/2)

- Latent variable: "risk"
- Pedestrians with higher "risk" are more likely to report higher scores on indicators
- Pedestrian gender is a significant predictor of "risk" (male pedestrians)
- Pedestrians with higher risk-taking appear to be more likely to cross at mid-block (not statistically significant).
- The first road link has higher probability of being chosen.
- When traffic is low, mid-block crossing probability increases.

Models for main urban roads (2/2)

- Latent variables: "risk" and "pleasure"
- The presence of the latent variable "pleasure" seems to improve the significance of the latent variable "risk", and the model overall.
- Nevertheless, the latent variable 'pleasure' was not found significant.
- Traffic becomes non significant

Structural models of the latent variables Risk = 0,538 * gender + ω Pleasure = -0,375 * gender + ω <u>Measurement equations: ordered logit</u> I_E1_iii = -1,34 * risk + u_1 I_B3_i = -1,65 * pleasure + u_4 I_E1_v = -1,89 * risk + u_2 I_B3_ii = -1,32 * pleasure + u_5 I_E2_i = -5,86 * risk + u_3 <u>Utility functions</u> V1 = -9,44 + 0,427 * first + -0,410 * Risk - 0,65 * Pleasure V2 = -7,23 + 0,427 * first V3 = ASC3

Models for other road types

- "Risk": pure risk-taking
- "Risk" significant
- Traffic non singificant

"Risk": trip optimisation "Risk" non significant Traffic singificant "Risk": conformity "Risk" significant Traffic non singificant

Overview of findings

- The effect of traffic volume was non significant on major roads and on minor / residential roads, but was significant on main and secondary roads.
- The effect of risk-taking was significant on major and minor roads, and marginally significant or non-significant on main and secondary roads.
- Overall, "risk-taking" is a key factor for crossing at mid-block when traffic is high, and "trip optimization" is a key factor for crossing at mid-block when traffic is low.
- In none of the ICLV models was 'pleasure' significant (but survey trip not representative of the usual walking motivations)

Discussion: research hypotheses

- The four ICLV models largely confirm the research hypotheses as per the effects of road and traffic factors of pedestrian behavior.
- The research hypotheses on human factors of pedestrian behavior were not fully confirmed.
- The results do not confirm the structure of the questionnaire and suggest that the underlying dimensions are in fact few

Discussion: methodological

- ICLV models useful for addressing the behavioral aspects of pedestrian trips in urban areas.
- Human factors may be important additional predictors of pedestrian behavior.
- ICLV vs. Two-stage approach
 - ICLV theoretically sounder; however, computationally demanding
 - The measurement error in the two-stage approach appears negligible *in this dataset* as the results of both approaches were similar

RANSPORTATION

Limitations

TRANSPORTATION RESEARCH BOARD

- The present sample is not representative of age groups, and the inclusion of older pedestrians in the sample in a future research might reveal additional effects of human factors on crossing behavior.
- The sample size is marginally adequate for a structural equation approach for latent variables.
- Although the model was simplified to enhance validity, more data would be required to generalize the results to different settings.
- Participants knew that they were being observed

"The Anonymous Pedestrians", Wroclaw, Poland

Next steps

- Pedestrian surveys combining field observations and questionnaires appear to be a promising tool.
- The proposed methodology and results need further development, more data and validation before they can be used for practical applications.
- The next steps of the research should address in particular the model's validation, internal and external (i.e. by means of new data collected).
- Allow tackling the question of using such models for prediction.

Road, traffic and human factors of pedestrian crossing behaviour: Integrated Choice and Latent Variables models

Eleonora Papadimitriou¹, Sylvain Lassarre², George Yannis¹, Dimitrios Tselentis¹

¹Department of Transportation Planning and Engineering, National Technical University of Athens, Athens, Greece ² IFSTTAR - French Institute of Science and Technology for Transport, Development and Networks, France

