

PREDICTING ROAD ACCIDENTS: A RARE-EVENTS MODELING

APPROACH

Dr. Athanasios Theofilatos, National Technical University of Athens (NTUA), Athens, Greece Prof. George Yannis, National Technical University of Athens (NTUA), Athens, Greece Dr. Pantelis Kopelias, University of Thessaly (UTH), Volos, Greece Mr. Fanis Papadimitriou, Attica Tollway Operations Authority – Attikes Diadromes S.A., Paiania, Greece

INTRODUCTION

Modeling road accident occurrence has gained increasing attention over the years. Considerable efforts have been made from researchers and policy makers in order to explain road accidents and improve road safety performance of highways. In reality, road accidents are rare events. In such cases, the binary dependent variable is characterized by dozens to thousands of times fewer events (accidents) than non-events (non-accidents).

RESULTS

Trial 1	β	S.E.	z value	p-value	Stratified sampling.
Constant	26.4158	11.3706	2.3232	0.0212	
Truck.Prop.	-0.0394	0.1072	-0.3684	0.7129	✤ 3 trials.
log(Speed)	-7.4700	2.4369	-3.0653	0.0025	
Log-likelihood at zero	ero -113.9 d -100.9				All accident cases and a rando sample of non-accident cases were included in each trial.
Final log-likelihood					
Likelihood ratio test	26.0				
AIC	106.9				
McFadden R ²			41		
					The best models are presented.
Trial 2	β	S.E.	z value	p value	• The sest models are presente
Constant	33.2999	14.3741	2.3117	0.0216	Adequate model fit.
Truck.Prop.	0.0157	0.0981	0.1597	0.8733	
log(Speed)	-9.0004	3.0874	-2.9152	0.0039	
Log-likelihood at zero	-113.9				The risk factors were identifie
Final log-likelihood	-100.6				
Likelihood ratio test	26.6				Consistent effect of speed and truck proportion in the difference
AIC	106.6				
McFadden R ²	0.1168				
					trials.
Trial 3	β	S.E.	z value	p value	
Constant	29.8363	12.6321	2.3619	0.0192	The logarithm of speed
Truck.Prop.	-0.0444	0.0964	-0.4600	0.6460	• The logarithm of speed
log(Speed)	-8.2035	2.7063	-3.0311	0.0028	significantly affects accident
Log-likelihood at zero		-113	3.9		occurrence.
Final log-likelihood	-100.8				
Likelihood ratio test	26.2				Consistent findings with past literature.
AIC	106.8				
McFadden R ²	0.1150				

OBJECTIVE

The objective of this study is to investigate accident likelihood on freeways by utilizing real-time traffic data and by considering accidents as rare events.

DATA

- The Attica Tollway (Attiki Odos) was chosen.
- Attiki Odos is a modern freeway
 - in Greater Athens Area, Greece.
- Accident and non-accident cases for 2008-2011.
- ✤ 3 random locations
- Basic Freeway Segments (BFS) were considered.
- Real-time traffic data
 - Closest loop detectors
 - ✤ 1-hour intervals
 - Traffic flow
 - Speed
 - Occupancy
 - Percentage of heavy vehicles in traffic

METHODOLOGY

Accidents are considered as rare-events. Traditional logit coefficients are biased.

- Rare-events logistic regression (King and Zeng, 2001a and 2001b).
- Case-control sampling design based on stratified sampling.
 - All events and a random selection of non-events.
 - A proportion of 1:10 for the ratio of events (accidents) to non-events (non-accidents) was used in each sample.
- ✤ A number of corrections are applied:

 $\mathbf{A}_{0} = \alpha - \ln\left[\left(\frac{1-\tau}{\tau}\right) * \left(\frac{1-\gamma}{\gamma}\right)\right]$

 \mathbf{x}_{α} is the new corrected constant term, α is the uncorrected constant term, τ is the proportion of events in the population and γ is the proportion of events in the sample.

The corrected logit function:

CONCLUSIONS

- First time application of rare-events model in road safety.
- Accident risk factors identified.
- Speed (logarithm) is found as the main risk factor.
- Confirmed that lower speeds increase accident likelihood.
- Model application in other case studies will assist real-time prediction of accident occurrence especially in locations with low number of accidents.

REFERENCES

 $\mathbf{r}_i = p_i + C_i$

- C_i is the correction factor
- $\mathbf{E}_{i} = (0.5 p_{i}) * p_{i} * (1 p_{i}) * x_{0} * V(\beta) * x_{i}$
- p_i is the probability of an event estimated using the corrected estimated coefficient a_0 , x_0 is the 1*(m+1) vector of values for each independent variable, $V(\beta)$ is the variance-covariance matrix, and lastly x_0' is the x_0 transposed.

Ahmed, M., Huang, H., Abdel-Aty, M., Guevara, B., 2011. Exploring a Bayesian hierarchical approach for developing safety performance functions for a mountainous freeway. Accident Analysis & Prevention 43, 1581-1589. Ahmed, M., Abdel-Aty, M., Yu, R., 2012. Assessment of the interaction between crash occurrence, mountainous freeway geometry, real-time weather and AVI traffic data. Transportation Research Record 2280, 51-59. King, G., Zeng, L., 2001a. Explaining rare events in international relations. International Organization 55(3), 693-715. King, G., Zeng, L., 2001b. Logistic regression in rare events data. Political Analysis 9(2), 137-163.

