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ABSTRACT 1 

The investigation of crash severity with freeway traffic and weather data has recently received 2 

significant attention by researchers. This paper extends previous research by proposing nonlinear 3 

models for modeling crash injury severity enhanced with traffic and weather data collected from 4 

urban arterials in Athens, Greece. Cusp catastrophe models are applied and compared with 5 

traditional statistical models. The results of crash severity models support the potential 6 

applicability of the cusp catastrophe theory to road safety, at least when crash severity is expressed 7 

as the number of severely and fatally injured by total number of persons involved in a crash. 8 

Variations in speed, average flow upstream of the location of interest, crash type and wind speed, 9 

were found to have a potential effect on the system dynamics. However, findings do not always 10 

confirm the strong presence of nonlinearity. When crash severity is expressed as the number of 11 

injured persons by the total number of vehicles involved in a crash, linear models could also be 12 

used to describe the underlying phenomenon.  13 

 14 

Keywords: Crash, injury severity, cusp catastrophe, macroscopic traffic data, weather 15 

information, urban arterials16 
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INTRODUCTION  1 

The effective treatment of crashes and the proactive transportation safety is a major concern to 2 

societies due to the losses in human lives and the economic and social costs. According to World 3 

Health Organization (1), the total number of road fatalities worldwide remains at 1.24 million per 4 

year.  5 

Over the last decade, much research that utilized real-time collected traffic and weather 6 

data in freeways has been carried out. Specifically, a large number of studies have investigated the 7 

effect of short-term traffic and weather parameters prior to a crash in order to explore crash 8 

likelihood (2, 3, 4, 5, 6,) and crash severity (7, 8, 9). The methodology of these studies is to perform 9 

a matched case-control approach by considering crash cases, but also a random sample of non-10 

crash cases. 11 

However, relevant research for crash injury severity is relatively limited. Fewer studies 12 

utilizing real-time traffic and weather data were found in international literature (6, 7, 10, 8, 9). 13 

Findings are diverse; Christoforou et al. (7) investigated injury severity by applying fixed and 14 

random parameters ordered probit models and found that increased traffic volume leads to less 15 

severe injuries. Other studies indicate that traffic parameters have limited influence (11, 12, 13) or 16 

even reduce severity of crashes (6). Other findings indicate that large speed variations and low 17 

visibility increase crash severity (8). Another study (11) examined single-vehicle crashes in 18 

Wisconsin and found that increased rainfall intensity increases severity of crashes. Low visibility 19 

conditions and fog were found to be positively correlated with crash severity (8, 14, 15).  20 

From a deeper look at the related literature it becomes evident that very limited research 21 

on both crash severity and likelihood focuses on urban arterials (16, 17). Nevertheless, a number 22 

of studies examine urban expressways (12, 13, 18, 19, 20, 21). Another issue relates to the 23 

methodological part, as alternative methods should be sought to better explain crash severity (7, 24 

22). Cusp catastrophe theory can be considered an alternative and promising methodological 25 

approach and it has been applied in traffic flow theory (23, 24, 25), but very rarely in transportation 26 

safety (26). This method of analysis is different than the existing classical statistical methods, due 27 

to the fact that cusp catastrophe theory investigates the existence of potential non-linearity in the 28 

“dynamic system” that causes sudden transitions between states (e.g. “safe” and “unsafe state”), 29 

due to small changes in the input parameters (e.g. independent variables).  30 

The knowledge of the transitions between safe and unsafe traffic conditions is critical to 31 

road safety. The conceptual gain of introducing cusp catastrophe theory in modeling road safety is 32 

that it is theoretically possible to identify which risk factors may cause sudden deterioration of 33 

road safety levels. For example, specific road sites which are considered safe (are in a safe state), 34 

could be easily turned into high crash risk sites (transition to unsafe state), if even slight changes 35 

in specific risk factors take place. On the other hand, researchers may detect which are the most 36 

effective road safety measures that can easily cause sudden improvements in road safety (e.g. 37 

sudden drop in crash counts) without the need of dramatic changes. This is also discussed by Park 38 

and Abdel-Aty (26). Summing up, the better understanding of cusp catastrophe model applicability 39 

in crash analyses is considered promising, since it can contribute to develop proactive safety 40 

approaches. 41 

Therefore, the aim of this study is twofold; a) firstly to add to the current knowledge by 42 

applying cusp catastrophe models in order to investigate crash injury severity, and b) to consider 43 

real-time traffic and weather data in urban arterials. The developed nonlinear models are contrasted 44 
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to well-established traditional statistical approaches. Data come from urban arterials located in the 1 

Athens metropolitan area (Greece).  2 

The remainder of the paper is organized as follows. The data preparation is demonstrated, 3 

followed by the description of methodology applied in order to explore crash severity. Next, the 4 

application of the models is illustrated and the results are presented and discussed. The last section 5 

provide the conclusions.  6 

DATA PREPARATION 7 

The available dataset refers to the period 2006-2011 and come from two high demand urban 8 

arterials in the center of Athens (Greece). These two arterials have similar geometrical and traffic 9 

characteristics. The dataset contains safety, traffic and weather data. More specifically, crash data 10 

were collected from the Greek accident database, SANTRA, which is provided by the National 11 

Technical University of Athens. It provides access to road crash in Greece since 1985 including 12 

all relevant information about each crash (persons injured, severity of injuries, location, weather, 13 

accident type etc.).  14 

Traffic data were extracted from the Traffic Management Centre (TMC) of Athens, which 15 

has been in operation since 2004 and covers several major roads in Athens. The TMC data included 16 

traffic flow, traffic occupancy and time speed every 1 minute. Traffic data from the adjacent 17 

upstream loop detector were considered. Data were further aggregated to 1-hour traffic information 18 

to obtain averages, standard deviations and so on, prior to a crash occurrence. It was anticipated 19 

that the 60-min traffic data before crash occurrence would cover the hazardous traffic conditions, 20 

consequently only the traffic data 1-hour prior to crash occurrence were initially considered.  21 

Weather data were collected from the Hydrological Observatory of Athens (27), which is 22 

an online open-access database, covering more than 10 meteorological stations located in the 23 

greater Athens area and providing measurements about rainfall, temperature, relative humidity, 24 

solar radiation, wind direction, wind speed etc. Each crash case was assigned to the closest 25 

meteorological station and then the relevant weather data had to be extracted. Then the 10-min raw 26 

data were aggregated over hour in order to obtain maxima, averages and standard deviations, in 27 

the time-slice of 1-hour, 2-hours, 6-hours and 12-hours prior to the time of the crash occurrence. 28 

 For the analysis to follow, a time lag of 20 minutes was used. This means that 20 minutes 29 

were subtracted from the time of each crash case in order to avoid the impact of the accident itself 30 

on the traffic variables and also to compensate for any potential inaccuracies in the precise time of 31 

the accident. This approach has been followed by previous relevant studies (7, 28). The following 32 

example illustrates the approach. If a crash occurred on 14 February at 12:00 at the loop detector 33 

“MS258”, then the relevant traffic and weather data are extracted for the time period 10:40 to 34 

11:40 from the closest upstream loop detector and from the closest meteorological station 35 

respectively. 36 

The final available dataset included 353 crash cases (not including crashes for 37 

intersections) for Kifisias and Mesogeion avenues from 2006 to 2011. As in various crash severity 38 

studies (8, 9) crash severity consisted of two levels, namely, fatal/severe injury (KSI) and slight 39 

injury (SI). A percentage of 11% of crashes were classified as severe (KSI), while 89% were 40 

classified as slight (SI). Powered-Two-Wheelers (PTWs) were involved in 225 of those crashes 41 

(63.7% of crashes). In order to explore crash severity, the dependent variable “severity” was 42 

decided to be re-defined and re-coded. Two types of severity were used. First, severity was defined 43 

as a percentage of the total severely or killed persons involved in each crash by the total number 44 
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of persons involved in a crash (Severity_1). The other type of severity is the total number of 1 

persons involved in a crash divided by the total number of vehicles involved in a crash 2 

(Severity_2). The two types of severity are defined as follows: 3 

 4 

Severity_1 = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑣𝑒𝑟𝑒𝑙𝑦 𝑖𝑛𝑗𝑢𝑟𝑒𝑑 𝑎𝑛𝑑 𝑘𝑖𝑙𝑙𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 𝑖𝑛𝑣𝑜𝑣𝑙𝑒𝑑
       (1) 5 

 6 

Severity_2 = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 𝑖𝑛𝑣𝑜𝑣𝑙𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑
             (2) 7 

 8 

Table 1 shows the descriptive statistics for crash severity.  9 

METHODOLOGY 10 

The proposed methodology is based on the cusp catastrophe models. The theoretical background 11 

is illustrated in this section of the study providing also a brief description of the catastrophe theory 12 

in general. For a detailed description about the cusp catastrophe, the reader is encouraged to refer 13 

to (29). A further comparative analysis will also take place using censored regression to compare 14 

the performance and explanatory power of the two methods.  15 

 16 

Catastrophe Theory 17 
 18 

Catastrophe theory examines the qualitative changes in the behavior of systems when the control 19 

factors that influence their behavioral state face smooth and gradual changes (30). In other words, 20 

the catastrophe theory assumes the existence of a dynamic system and explains the sudden 21 

transition between the system states, when small changes in the parameters of the system (known 22 

as α and β) take place. The term “catastrophe” may be confusing, as it has nothing to do with the 23 

consequences of the event. In mathematical sciences, the term catastrophe implies a nonlinear 24 

transition from one state to another. Catastrophe theory became popular in the 1970’s and since 25 

then its applications range from economics to psychology. However, this approach had a few major 26 

drawbacks. The major reason of criticism stems from the qualitative methodology used in the 27 

aforementioned applications, due to the fact that catastrophe theory concerned deterministic 28 

dynamical systems (29). Another issue is the ad hoc nature of the selection of the variables that 29 

would be used as control factors. (31), comprehensively summarizes the critiques of catastrophe 30 

theory and the reader may refer to this study. Consequently, there was a deep need to make a 31 

stochastic formulation in the catastrophe theory. Indeed, several stochastic formulations have been 32 

found along with statistical methods, so that the quantitative comparison of catastrophe models 33 

with data is enabled (32, 33, 34). 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 
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TABLE 1   Description and Descriptive Statistics of Sample Variables  1 
Variable Description Unit Mean Std. deviation

Severity_1

Number of severely injured and killed divided by 

Total number of persons involved unitless 0.086 0.259

Severity_2

Total number of persons involved divided by Total 

number of vehicles involved unitless 0.885 0.500

Acc.Type1 (Off road/Fixed object/Other) unitless

Acc.Type2 (Head-on) unitless

Acc.Type3 (Rear-end) unitless

Acc.Type4 (Side) unitless

Acc.Type5 (Sideswipe) unitless

Q_avg_1h_up 1h average flow per lane upstream veh/hour/lane 810.450 301.719

Q_stdev_1h_up 1h st.deviation of flow per lane upstream veh/hour/lane 264.330 339.374

Q_median_1h_up 1h median of flow per lane upstream veh/hour/lane 628.600 437.337

Q_cv_1h_up 1h coefficient of variation of flow per lane upstream unitless 0.109 0.085

V_avg_1h_up 1h average speed upstream km/h 47.340 18.959

V_stdev_1h_up 1h st.deviation of speed upstream km/h 5.333 5.591

V_cv_1h_up 1h coefficient of variation of speed upstream unitless 0.154 0.175

Occ_avg_1h_up 1h average occupancy upstream percentage % 15.730 11.143

Occ_stdev_1h_up 1h st.deviation of occupancy upstream percentage % 4.097 4.917

Occ_cv_1h_up 1h coefficient of variation of occupancy upstream unitless 0.248 0.216

T_1h_max 1h maximum temperature
o
C 19.240 7.710

T_1h_avg 1h average temperature
o
C 18.700 7.714

T_1h_stdev 1h st.deviation of temperature
o
C 0.397 0.335

Rain_1h_sum 1h sum of rainfall mm 0.030 0.265

Rain_1h_st.dev 1h st.deviation of rainfall mm 0.004 0.031

Rain_2h_sum 2h sum of rainfall mm 0.068 0.618

Rain_2h_st.dev 2h sum of rainfall mm 0.010 0.094

Rain_6h_sum 6h sum of rainfall mm 0.152 0.921

Rain_6h_st.dev 6h st.deviation of rainfall mm 0.013 0.083

Rain_12h_sum 12h sum of rainfall mm 0.252 1.142

Rain_12h_st.dev 12h st.deviation of rainfall mm 0.014 0.068

W.Sp_1h_max 1h maximum wind speed m/sec 2.759 1.836

W.Sp_1h_avg 1h average wind speed m/sec 2.204 1.688

W.Sp_1h_stdev 1h st.deviation of wind speed m/sec 0.387 0.223

Sol_1h_max 1h maximum solar radiation W/m
2

377.410 362.890

Sol_1h_avg 1h average solar radiation W/m
2

307.550 321.884

* Distribution of crash types

Acc.Type

155*

36*

73*

53*

36*

 2 
 3 

Cusp Catastrophe  4 
 5 

Of the seven elementary types of catastrophe models, perhaps the most popular and easy is the 6 

cusp catastrophe. The cusp catastrophe model is capable of handling complex linear and nonlinear 7 

relationships simultaneously, by applying a high-order probability density function.  This density 8 

function can replicate sudden behavior jumps and transitions. Let a deterministic dynamical system 9 

by defined as: 10 

 11 
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𝜕𝑦

𝜕𝑡
= −

𝜕𝑉(𝑦;𝛼,𝛽)

𝜕𝑦
              (3) 1 

 2 

where 𝑦 represents the state variable (can be considered as the dependent variable) and α, β are the 3 

two control parameters that determine the behaviour of the system. The canonical form of the cusp 4 

catastrophe function is: 5 

 6 

−𝑉(𝑦; 𝛼, 𝛽) = 𝛼𝑦 +
1

2
𝛽𝑦3 −

1

4
𝛽𝑦4                 (4) 7 

 8 

This system moves towards equilibrium and will reach one when: 9 

 10 

−
𝜕𝑉(𝑦;𝛼,𝛽)

𝜕𝑦
= 0 = 𝛼 + 𝛽𝑦 − 𝑦3          (5) 11 

 12 

There is one solution to this equation if 𝛿 > 0, and three solutions if 𝛿 < 0. The term δ is 13 

also called Cardan’s discriminant and is defined as  14 

 15 

𝛿 = 27𝛼 − 4𝛽3              (6) 16 

 17 

The set of values α and β for which 𝛿 = 0, determines the bifurcation set. A few studies 18 

(29, 35) have well-explained the cusp equilibrium surface for nonlinear deterministic systems. 19 

Statistically speaking, the cusp equilibrium surface may be considered as a response surface, where 20 

depending on the values of α and β, its height predicts the value of the dependent variable. 21 

Moreover, the dependent variable 𝑦 cannot be necessarily observed (and thus being an observed 22 

quantity), but it is rather a canonical variable depending on a number of measured dependent 23 

variables. In that context, the control variables α and β are canonical as well and depend on a 24 

number of actual measured independent variables.  25 

A number of qualitative behaviors of the cusp model were derived by (36). These 26 

characteristics are called catastrophe flags. These characteristics are of major importance, because 27 

the existence of some (or all) of them indicates a strong presence of a good fit to the data and 28 

therefore evidence is gathered for the presence of cusp catastrophe in the system. Some of them 29 

are sudden jumps in the value of the canonical state variables, hysteresis and multi-modality. As 30 

stated earlier, catastrophe models are applied in deterministic systems. As a consequence, these 31 

models cannot be directly applied in stochastic environments. For that reason, a stochastic 32 

catastrophe theory was proposed (37, 38, 39, 40) by adding a white noise Wiener process, namely 33 

𝑑𝑊(𝑡) to the initial Equation 3. Therefore, Equation 3, is transformed to a stochastic differential 34 

equation: 35 

 36 

𝑑𝑌 =
𝜕𝑉(𝑌;𝛼,𝛽)

𝜕𝛶
𝑑𝑡 + 𝑑𝑊(𝑡)            (7) 37 

 38 

This stochastic differential equation is affiliated with a probability density that describes 39 

the allocation of system states at any moment in time. It can be expressed as follows: 40 

 41 

𝑓(𝑦) = 
𝜎

𝜓2 𝑒𝑥𝑝[
𝛼(𝑦−𝜆)+

1

2
𝛽(𝑦−𝜆)2−

1

4
(𝑦−𝜆)4

𝜎2 ]            (8) 42 

 43 
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where ψ is the normalizing constant and λ determines the location parameter. The variable 1 

β is the bifurcation factor and α is the asymmetry factor. The asymmetry factor governs how close 2 

the system is to a sudden discontinuous change of events, while the bifurcation factor governs how 3 

large a change will take place. As stated earlier, the variables y, α and β are canonical. Now let’s 4 

assume a set of measured dependent variables 𝑌1, 𝑌2, … , 𝑌𝑛, then: 5 

 6 

𝑦 = 𝑤0 + 𝑤1𝑌1 + 𝑤2𝑌2 + ⋯ + 𝑤𝑛𝑌𝑛.            (9) 7 

 8 

Similarly, if a set of measured independent variables 𝑋1, 𝑋2, … , 𝑋𝑛 is considered the control 9 

factors α and β can be estimated as: 10 

 11 

𝛼 = 𝛼0 + 𝑎1𝛸1 + 𝛼2𝛸2 + ⋯ + 𝛼𝑛𝛸𝑛,            (10) 12 

 13 

and 14 

 15 

𝛽 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑛𝑋𝑛.            (11) 16 

 17 

In order to assess the fit of the cusp model a set of diagnostic tools have been suggested 18 

such as the pseudo-R2 (41), the well-known AIC (42) and BIC (43). It is noted that the pseudo-R2 19 

can become negative. In order to further evaluate the cusp model fit, more diagnostics are 20 

suggested (41). For example, each one of the coefficients 𝑤1, 𝑤2, … 𝑤𝑛 should be statistically 21 

significant (except 𝑤0) as well at least one of the a’s or the b’s. Moreover, at least 10% of the pairs 22 

(𝑎𝑖, 𝛽𝑖) should lie inside the bifurcation region. One alternative diagnostic measure according to a 23 

number of studies such as this of (44) and (45), is the comparison of the cusp model with a 24 

nonlinear logistic model: 25 

 26 

𝑦 = 
1

1+exp (−
𝛼

𝛽
)
 +𝜀                 (12) 27 

 28 

where the parameters (x, y, z) were defined previously in Equations 9, 10 and 11, while ε 29 

is the random disturbance. The nonlinear logistic model has the ability to model the sudden 30 

changes in the response variable y in a way “similar” to the sudden transition in the cusp model. 31 

 32 

Censored Regression 33 
 34 

In our study, the dependent variables are censored, as they cannot take all values. More 35 

specifically, the severity variables are continuous and take all values between 0 and 1(are 36 

censored). Tobit model was introduced by Tobin (46) and is proposed to be applied when the 37 

dependent variable is censored in some way. In such case it is suggested that traditional linear 38 

regression models are not appropriate (47).  39 

The censored regression model is a generalization of the standard Tobit model. All 40 

corresponding equations can be found in (48). The dependent variable can have a lower threshold 41 

(left-censored) or an upper threshold (right-censored) or both: 42 

 43 

𝑦𝑖
∗ = 𝑥𝑖

′𝛽 + 𝜀𝑖            (13) 44 
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𝑦𝑖 = {

𝑎            𝑖𝑓 𝑦𝑖
∗ ≤ 𝑎

𝑦𝑖
∗ 𝑖𝑓 𝑎 < 𝑦𝑖

∗ < 𝑏

𝑏           𝑖𝑓 𝑦𝑖
∗ ≥ 𝑏

         (14) 1 

The censored regression model is usually estimated by the Maximum Likelihood method. The 2 

error term ε is assumed to follow a normal distribution (0, σ2). The likelihood function is the 3 

following:  4 

 5 

𝑙𝑜𝑔𝐿 = ∑ [𝐼𝑖
𝑎𝑁

𝑖=1 𝑙𝑜𝑔𝛷 (
𝑎−𝑥𝑖

′𝛽

𝜎
) + 𝐼𝑖

𝑏𝑙𝑜𝑔𝛷 (
𝑥𝑖
′𝛽−𝑏

𝜎
) + (1 − 𝐼𝑖

𝑎 − 𝐼𝑖
𝑏)(𝑙𝑜𝑔𝜑 (

𝑦𝑖−𝑥𝑖
′𝛽

𝜎
) − 𝑙𝑜𝑔𝜎)], 6 

(15) 7 

 8 

where φ() and Φ() denote the probability density function and the cumulative distribution 9 

respectively of the standard normal distribution. 𝐼𝑖
𝑎 and 𝐼𝑖

𝑏 are indicator functions: 10 

 11 

𝐼𝑖
𝑎 = {

1     𝑖𝑓 𝑦𝑖 = 𝑎
0     𝑖𝑓  𝑦𝑖 > 𝑎

          (16) 12 

 13 

𝐼𝑖
𝑏 = {

1     𝑖𝑓 𝑦𝑖 = 𝑏
0    𝑖𝑓  𝑦𝑖 < 𝑏

          (17) 14 

RESULTS 15 

In this study, a series of cusp catastrophe models are developed by utilizing real-time traffic and 16 

weather data, to model the micro-level safety (crash severity) in urban arterials. The dependent 17 

variable is related to the state variable y, while the traffic, weather as well as other crash variables 18 

constitute the control factors α and β. However, there is no a priori determination of which 19 

parameter (traffic, weather, other) would be assigned to each control factor. This occurs because 20 

there is a lack of objective criteria to determine whether a predictor variable should be classified 21 

as an asymmetry or as a bifurcation variable (29, 49). For interpretation reasons, one measured 22 

dependent variable is investigated each time, therefore equation 9 is simplified to: 23 

 24 

𝑦 = 𝑤0 + 𝑤1𝑌1.            (18) 25 

 26 

The intention is to investigate the potential existence of non-linearity in the system and 27 

also the potential transition of the “crash severity state” from a lower crash severity state (safe 28 

state) to a higher crash severity state (unsafe state), or vice versa, through the changes of the 29 

various traffic, weather and other crash predictors. Due the special nature of the cusp modeling 30 

approach results should always be interpreted carefully (26). Tables 2 and 3 illustrate the findings 31 

of cusp catastrophe and censored regression model respectively for Severity_1 (number of severely 32 

injured and killed divided by total number of persons involved). 33 

Results of Table 2 constitute a promising evidence of presence of cusp and imply strong 34 

nonlinear relationships between crash injury severity and independent variables. More specifically, 35 

it is found that small changes to crash type (Acc.type1, Acc.type2, Acc.type3, Acc.type4), 36 

maximum wind speed values (W.Sp_1h_max), traffic flow (log(Q_avg_1h_up)) or coefficient of 37 

variation of speed (V_cv_1h_up), may lead to sudden changes to crash severity. The cusp model 38 

has a considerably high value of McFadden R2 (0.789) and pseudo-R2 (0.845). However, this 39 
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diagnostic does not guarantee the presence of cusp and therefore more evidence is needed. It is 1 

interesting though that the value of the logistic curve value of R2 is significantly lower (0.095) 2 

showing that the cusp model is superior to the nonlinear logistic model. 3 

 4 

TABLE 2  Cusp Catastrophe Model Results For Severity_1 Defined As The Number Of 5 

Severely Injured And Killed By Total Number Of Persons Involved 6 
 7 

 8 
Figure 1 visualizes the 3D and the 2D projection of the cusp catastrophe surface, where the 9 

x-axis is the α and the y-axis is the β. Each dot is a single case and its size varies according to the 10 

observed bivariate density of the control factors’ values at the location of the point. More 11 

specifically, the color of the dots varies depending on the value of the response (state) variable y, 12 

with higher values being associated with more intense purple, while lower values with more 13 

intense green. It is observed that the 100% of cases fall inside the V-shaped curve which is the 14 

bifurcation area (instability area), meaning that all cases are in a very vulnerable condition where 15 

the current (low) severity state could be easily turned into a high severity state. Strictly speaking, 16 

the cases that lie inside the bifurcation areas are the cases where a sudden or dramatic change in 17 

severity level can occur when there is a small change in parameter α. Therefore, there is high 18 

possibility of presence of a dynamic nonlinear system.  19 

 20 

Assymetry factor a Variable Coefficient Std. error p-value

a0 Constant term -0.200 0.093 0.032**

a1 V_cv_1h_up -0.720 0.372 0.052*

a2 Acc.type1 -0.417 0.228 0.067*

a3 Acc.type2 -0.280 0.144 0.052*

a4 Acc.type3 -1.021 0.420 0.015**

a5 Acc.type4 -0.493 0.286 0.084*

a6 W.Sp_1h_max -0.068 0.032 0.031**

Bifurcation factor β

b0 Constant term - - -

b1 log(Q_avg_1h_up) 0.755 0.034 0.000**

Dependent variable y

w0 Constant term -2.342 0.047 0.000**

w1 Severity_1 4.732 0.101 0.000**

McFadden R
2

0.789

pseudo-R
2

0.845

Logistic model R
2

0.095

**=95%  significance level

*=90%  significance level
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 1 

FIGURE 1 2D projection (left panel) and 3D projection (right panel) of cusp surface for 2 

Severity_1. 3 
 4 

One more prerequisite for the confirmation of a good fit of the cusp model is the 5 

significance of parameter w1 and at least one of parameters a and β. The model shows several 6 

significant variables and provides evidence for the existence of nonlinearity.  7 

In order to further compare the cusp catastrophe model, censored regression was applied. 8 

The goodness of fit was assessed via the Madalla R2 (47, 50), indicating a relatively good goodness 9 

of fit, but inferior to the cusp model. Moreover, the results of the model shows a consistent negative 10 

correlation among all independent variables and crash severity. It can be concluded that collisions 11 

with fixed object increase crash severity while maximum wind speed, variations in speed and 12 

increased traffic flow reduce it. 13 

 14 

TABLE 3 Censored Regression Model Results For Severity_1 Defined As Number Of 15 

Severely Injured and Killed By Total Number Of Persons Involved 16 

Variable Coefficient Std.error p-value

Constant term 7.078 2.943 0.016**

V_cv_1h_up -1.975 1.627 0.225

Acc.Type1 -1.731 1.049 0.098*

Acc.Type2 -1.225 0.712 0.085*

Acc.Type3 -12.729 563.132 0.982

Acc.Type4 -1.763 1.075 0.101

W.Sp_1h_max -0.302 0.169 0.074*

log(Q_avg_1h_up) -1.312 0.498 0.008**

Madalla R
2

0.119

**=95%  significance level

*=90%  significance level   17 
The interpretation of models for Severity_2 (total number of persons involved by total 18 

number of vehicles involved) is similar. Table 4 shows the results of the cusp catastrophe model. 19 

The cusp R2 (0.303) is lower than the logistic curve R2 (0.313), meaning that both models equally 20 
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perform. As it can be observed, the significant variables introduced to the description of α and β 1 

in Severity_2 model differ from those in the Severity_1 model. One main difference is that crash 2 

type (Acc.type) variable in Severity_2 model is used as bifurcation factor, while in the first model 3 

is used as asymmetry factor. In the former model, the logarithm of traffic flow was used as a 4 

bifurcation factor, while in the latter model is used as asymmetry factor. These two findings 5 

indicate a different effect of these variables on each type of crash severity. It is also observed that 6 

maximum solar radiation (Sol_1h_max) has an impact only on Severity_2 model. 7 

 8 

TABLE 4   Cusp Catastrophe Model Results for Severity_ 2 (Total Number Of Persons 9 

Involved By Total Number Of Vehicles Involved) 10 

 11 

 12 
Table 5 shows the censored regression analysis. In this case however, the cusp model is 13 

not confirmed to be better than the traditional statistical methods, as the value of Madalla R2 of the 14 

censored model (0.3), is similar to those of the cusp model. Consequently, in this case, the 15 

existence of non-linearity is not clear. Results may also imply that the linearity in the system is 16 

preserved or that both linear and non-linear relationships explain the phenomenon.  17 

 18 

Assymetry factor a Variable Coefficient Std. error p-value

a0 Constant term -0.251 0.226 0.267

a1 V_cv_1h_up 0.172 0.037 0.004**

a2 log(Q_avg_1h_up) -0.101 0.047 0.031**

a3 Sol_1h_max -0.001 0.000 0.006**

Bifurcation factor β

b0 Constant term 1.048 0.082 0.000**

b1 Acc.Type1 0.783 0.280 0.005**

b2 Acc.Type2 2.115 0.077 0.000**

b3 Acc.Type3 2.350 0.242 0.000**

b4 Acc.Type4 2.392 0.276 0.000**

Dependent variable y

w0 Constant term -2.847 0.041 0.000**

w1 Severity_2 1.689 0.056 0.000**

McFadden R
2

0.251

pseudo-R
2

0.303

Logistic model R
2

0.313

**=95%  significance level

*=90%  significance level
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TABLE 5 Censored Regression Model Results For Severity_ 2 (Total Number Of Persons 1 

Involved By Total Number Of Vehicles Involved) 2 
 3 

Variable Coefficient Std.error p-value

Constant term 1.484 0.291 0.000**

V_cv_1h_up 0.057 0.132 0.663

log(Q_avg_1h_up) -0.041 0.000 0.367

Sol_1h_max 0.000 0.000 0.009**

Acc.Type1 -0.259 0.078 0.000**

Acc.Type2 -0.500 0.060 0.000**

Acc.Type3 -0.571 0.068 0.000**

Acc.Type4 -0.543 0.078 0.000**

Madalla R
2

0.300

**=95%  significance level

*=90%  significance level  4 
 5 

Figure 2 shows the graphical assessment of the 2D projection of the cusp catastrophe 6 

surface does not provide strong evidence of nonlinear relationships, although more than 10% of 7 

cases lie within the instability area.  8 

  
 9 

 10 

FIGURE 2 2D projection (left panel) and 3D projection (right panel) of cusp surface for 11 

Severity_2. 12 

CONCLUSIONS 13 

This study has presented the analysis of crash severity in urban arterials by applying cusp 14 

catastrophe models. The aim was to examine the assumption that safety of the system as expressed 15 

by the crash severity types, could be considered as a nonlinear dynamic system, where the 16 

transitions from safe to unsafe conditions and vice versa, can occur due to smooth or small changes 17 
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to some control factors. Traffic, weather and traditional crash information were considered as 1 

potentially critical to the construction of the control factors. 2 

The results of crash severity models justify the potential applicability of the cusp 3 

catastrophe, at least when crash severity is expressed as the number of severely and fatally injured 4 

by total number of persons involved in a crash. It is suggested that variations in speed, average 5 

flow upstream, crash type and wind speed, were found to have a potential effect on the system 6 

dynamics. However, findings do not always confirm the strong presence of a dynamic system. 7 

When crash severity is expressed as the number of injured persons by the total number of vehicles 8 

involved in a crash, linear models are proved equally capable of describing the underlying 9 

phenomenon. One can conclude that in such cases the linearity of the safety system is preserved.  10 

The obtained results confirm in general that road safety in urban roads could be treated as 11 

nonlinear dynamic system, when high resolution traffic and weather traffic data are considered. 12 

Moreover, some other crash characteristics such as the type of crash, consistently influence the 13 

system dynamics. In other words, the findings indicate that the dynamic change in urban road 14 

safety levels expressed by crash severity is likely to be nonlinear in nature. Unlike the traditional 15 

linear modelling approach, the results indicate the possible existence of a catastrophic influence of 16 

medium-term changes in traffic and weather factors on the system, as sudden changes between 17 

different states of the system take place. As a consequence, this theory could be seen as a useful 18 

tool for developing indicators of a catastrophe, although the actual points at which the catastrophic 19 

changes occur cannot be easily predicted. Although there is definitely much room for additional 20 

research, this paper clearly demonstrates the possibility of using high resolution traffic and weather 21 

data to estimate crash severity and probability, through the development of an advanced stochastic 22 

differential equation (i.e., cusp catastrophe model).  23 

It is to note that results of have to be treated with care, as the statistically satisfactory fit of 24 

the majority of the proposed models, by no means gives us definitive evidence for the presence of 25 

dynamical phase transition. In that context, if more research is done towards this direction, the 26 

prediction and the qualitative assessment of the catastrophe points would definitely have an 27 

outstanding contribution to road safety, due to the enhancement of the proactive safety 28 

management system. 29 
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