3D SSD CONTROL ON LEFT-TURN CURVES OF FREEWAYS OVERLAPPED WITH VERTICAL CURVES

Stergios Mavromatis, Assistant Professor Technological Educational Institute of Athens

stemavro@teiath.gr

Basil Psarianos, Professor National Technical University of Athens psari@survey.ntua.gr

Fotis Mertzanis MSc, PhD Candidate

National Technical University of Athens fmertz@central.ntua.gr

Sophia Vardaki PhD, Senior Researcher National Technical University of Athens sophiav@central.ntua.gr

3D Highway Geometry

- 2 Independent and Mostly Uncorrelated 2D Stages
 - horizontal alignment
 - vertical alignment
- 2D Approach Associated with Design Misconceptions that Influence Design Performance Adversely
 - typical case: SSD

2D SSD Calculation

- Inexact
- □ Fragmentary
- May Produce Design Deficiencies
- May be Detrimental to Cost, Performance and/or Safety of Divided Highways

Current Practice

D 2D Approach

- > efforts to overcome this incorrect SSD determination
 - establishing some coordination between the horizontal and vertical curve positioning
- > not all design cases are addressed

Current Practice on Left Curved Divided Highways

Necessity for SSD Adequacy Emphasized

No Explicit Process Provided

- SSD_{AVAILABLE} defined by lateral clearance and curve radius
 - valid for circular curves longer than the sight distance assuming both driver and obstacle positioned on circular curve
 - no assurance whether barrier height and/or the presence of vertical curve do not obstruct driver's line of sight

SSD Modeling

3D Models

- capable of simulating accurately compound road environments (3D)
- allow the definition of actual vision field to driver (3D)
- Focused in optimizing the available SSD introducing
 - ✓ new algorithms
 - design parameter combinations

Deliver Reliable Tool for SSD Assessments

- Simulate During Emergency Braking Conditions via 3-D Perspective Concurrently
 - alignment design

Objectives

vehicle dynamics

(1/2)

Define Areas where Arrangements of Crest Vertical Curvature on Horizontal Circular Alignments **Generate SSD Inadequacies**

quantify the safety impact

Objectives

provide possible realistic solutions based on existing design parameter selection associated to SSD

(2/2)

$SSD_{DEMANDED} \leq SSD_{AVAILABLE}$

- - enriched point mass model
 - actual values of grade (vertical curves)
 - friction variation (vehicle cornering)
- - driver's line of sight towards object height
 at certain axis offset
 3D roadway environment

SSD Modeling (existing approach)

SSD_{AVAILABLE} (Station A)

Z

eye.

object heigh

SED

SSD_{AVAILABLE} (Station A + calc. step)

SSD_{AVAILABLE} (Station A) **VS SSD**_{AVAILABLE} (Station A + calc. step)

1E/

《国八

(1/3)

SSD_{DEMANDED} = **SSD**_{AVAILABLE}

八百八

(2/3)

SSD_{DEMANDED} = **SSD**_{AVAILABLE}

1E/

(3/3)

SSD_{DEMANDED} = **SSD**_{AVAILABLE}

3D SSD Adequacy Investigation on Left Curved Divided Highways

- AASHTO 2011 Design Guidelines
 - V_{design} =130km/h
 - variety of horizontal vertical parameters
 - ✓ passing lane 3.60m
 - ✓ inner shoulder width = 1.20m
 - ✓ NJ curvature at top increases by 0.22m
 - ✓ NJ median barrier (0.90m high) → P²
 - ✓ crest vertical curve boundary values
 +4% and -4% (rolling terrain)

Output Data (R=950m, K=125m)

Output Data (18 alignments)

Percentage Reduction of SSD_{available} to Retain OH=0.60m

	Crest Vertical Curvature Rate (m)				
Horizontal Radius (m)		125	250	400	
	950	> 48%	> 48%	> 48%	
	1500	> 35%	> 35%	> 35%	
	2000	> 25%	> 25%	> 25%	
	2500	> 16%	> 16%	> 16%	
	3000	8%	9%	9%	
	3500	1%	1%	2%	

- In Current Practice SSD Parameters
 - based on experience
 - > do not represent entire passenger vehicle fleet
- Introduction of:

"tolerable road length not visible to the driver"

Tolerable Road Length Not Visible to the Driver

- SSD_{available} = SSD_{demanded} Reduced by 10%-12%
 - SSD reduction suggestions, according to which the current deceleration rate of 3,7m/sec² can be increased to 4.3m/sec²
 - incorporate improved braking performance of modern vehicles (ABS, etc.)

Reduction of SSD by 10%-12%

	Crest Vertical Curvature Rate (m)				
Horizontal Radius (m)		125	250	400	
	950	> 48%	> 48%	> 48%	
	1500	> 35%	> 35%	> 35%	
	2000	> 25%	> 25%	> 25%	
	2500	> 16%	> 16%	> 16%	
	3000	8%	9%	9%	
	3500	1%	1%	2%	

Still SSD Inadequacy for R<2700m</p>

inner shoulder width = 1.20m

Increase Object Height!!!

- Set Object Height = Driver Height
- Vehicle Tail Lights Height = 1.08m
- Based on FMVSS, Stop Lamp Heights of Passenger Cars Fall Between 38cm – 183cm
- Benefits while Performing SSD Assessment
 - consistency of the design and driver's expectations can be satisfied in terms of
 - avoiding ununiformed posted speed areas or/and
 - ✓ unsuitable lateral road broadenings

where in each case safety violations might occur as well

Percentage Reduction of SSD_{available} to Retain OH=1.08m

	Crest Vertical Curvature Rate (m)				
Horizontal Radius (m)		125	250	400	
	950	37%	11%	0%	
	1500	35%	11%	0%	
	2000	25%	11%	0%	
	2500	16%	12%	0%	
	3000	8%	9%	0%	
	3500	1%	1%	0%	

- Arrangements of Design Elements (V_{design} =130km/h, ISW = 1.20m)
 - K=125m for R>2800m
 - R=950m for K>250m

Conclusions

SSD Adequacy Investigation

- passing lane of left-turn freeways with compound alignment
- SSD_{DEMANDED} ≤ SSD_{AVAILABLE}
- Potential Safety Violation for AASHTO 2011
 - V_{design} =130km/h
 - inner shoulder width = 1.20m

Conclusions

- Extensive SSD Shortage Areas for Control Horizontal and Vertical Design Values
- Various Compound Alignments Examined
 - by broadening the horizontal curves, the conflict area formed by the sight line intersection against the median width increases as well
 - resulting in relevant vertical curve radii raise

Conclusions

- "Tolerable Road Length Not Visible to the Driver"
 - length of the demanded SSD reduced by 10%-12%
 - ✓ SSD adequacy R>2700m
- Necessity of Increasing
 Object Height to 1.08m
 (vehicle tail lights = driver height)
 - > most optimal mean to avoid extensive design and operational interventions

Further Research

Additional Work

- examine more speed values
- optimize in terms of SSD provision, the influence of additional parameters
 - inner shoulder width
 - median barrier type for every utilized case (bridge, tunnel areas, interchange ramps etc.)
- assess night time driving conditions
- investigate human factor

