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ABSTRACT 
 
We examine the effects of incident occurrence on freeway traffic. Although the true influence of 
a freeway incident may not be directly observed, it may be identified using the maximum spatial 
extent of the disturbance induced to upstream traffic. Spatial and temporal extent is susceptible 
to various traffic, weather, geometry and incident specific factors. The above framework is 
implemented using a Multiple Indicators-Multiple Causes (MIMIC) latent variable model. 
Results using data from Athens, Greece indicate that the MIMIC model is able to accurately 
determine the influence of an incident on upstream traffic with 72% probability of producing 
mean square errors less than 0.05. Speed, lane volume, alignment, rainfall intensity, clearance 
time and whether the incident is a secondary or a primary one are among the most influential 
factors for assessing the anticipatory effect of incidents to traffic. 
 
Keywords: incidents, freeway operations, spatial and temporal traffic evolution, structural 
equation modeling. 
 
 
INTRODUCTION 
 
Identifying and proactively managing the effects of incidents is the cornerstone of modern 
freeway traffic and safety management systems (Vlahogianni et al., 2012; Ahmed and Abdel-
Aty, 2013). Overall, incidents are critical, as they form a region upstream of their occurrence 
with degraded traffic characteristics and reduced roadway capacity; this region may entail 
increased risk of secondary accident occurrence (Khattak et al., 2011; Vlahogianni et al., 2012). 
There are several interesting topics related to freeway incident management that have attracted 
significant research over the years. These include automatic incident detection (Jeong et al. 
2011), modelling of incident duration (Ozbay and Nayan, 2006; Vlahogianni et al., 2010; 
Khattak et al., 2011; Vlahogianni and Karlaftis, 2013), estimating the delays induced due to 
incidents (Garib et al., 1997; Kwon et al., 2006) and detecting secondary accidents (Raub et al. 
1997, Moore et al. 2004, Zhang and Khattak, 2010; Vlahogianni et al., 2010; Imprialou et al., 
2013).  
 
In incident management strategies, the influence of an incident on freeway traffic has been 
mainly considered as static. Researchers have defined several spatiotemporal criteria to account 
for the effect of an incident on upstream traffic (e.g. km upstream and 15 minutes after the 
incident occurrence) (Raub et al. 1997, Karlaftis et al. 1999). Recently, a series of papers have 
focused on dynamically assessing the spatio-temporal propagation of the influence of an incident 
to upstream locations of the road network from visually observing the progression of the queue 
formulated upstream of a primary incident (Sun and Chilukuri, 2010), to queue based analytical 
estimations (Zhang and Khattak, 2010), cumulative arrival and departure plots (Zhan et al., 
2009), and other analytical estimation methods stemming from loop detector data (Orfanou et al., 
2011, Imprialou et al. 2012). These methods have been almost exclusively dedicated to 
identifying the duration of the incident or detecting secondary accidents as those occurring 
within or at the boundaries of the formed queue (Moore et al., 2004; Zhang and Khattak, 2010; 
Vlahogianni et al., 2012).  
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The above studies usually define the influence based on the duration of the queue (most times 
taken to coincide with the incident clearance time), formed upstream of an incident. At the same 
time, they disregard the spatial influence of the incident to upstream traffic given, for example, 
by the spatial extent of the formed queue. The duration of the queue is usually related to 
aggregate traffic and weather information and rarely related to the disaggregate traffic and 
weather conditions at the occurrence of the incident. Interestingly, this approach is not inclusive 
enough as there are cases where the effect of an incident to the upstream traffic is not translated 
to queue formation and stop and go conditions, but to a disturbance (e.g. a moving jam or an area 
with reduced traffic characteristics) upstream of the incident’s location. Moreover, no attempt to 
develop explanatory relationships between the spatio-temporal extent of the incident’s influence 
to traffic and other, geometry and incident related factors has been made in the literature. 
Relating the effects of an incident on upstream traffic and connecting it to observable factors 
may have significant management and policy making implications.  
 
In this paper, we research the influence of incident occurrence on freeway traffic by jointly 
considering the maximum spatial extent and total duration of a disturbance formed upstream of 
an incident. The methodological approach is based on structural equation modeling, a 
generalized multivariate statistical technique commonly used in social sciences that may 
incorporate constructs that cannot be directly observed (latent variables) (Washington et al. 
2010). The paper is structured as follows: the nest section provides a presentation of the problem 
statement and the basic notions of structural equations modeling. Following the area of 
implementation and the dataset is presented, along with the results. The paper ends with some 
concluding remarks. 
 
ASSESSING THE INFLUENCE OF INCIDENTS ON TRAFFIC 
 
Problem Formulation 
 
Every incident may create a disturbance on traffic flow that is propagated upstream of the 
incident’s location. We assume that the true influence of a freeway incident may not be directly 
observed but may be identified using the maximum length maxL and the duration T  of a 
disturbance formed upstream of an incident as indicators. Moreover, we assume that these 
indicators are susceptible to various traffic, weather, geometry and incident specific factors, such 
as speed and hourly volume at the occurrence of the incident, rainfall intensity, upstream 
geometry or alignment, number of vehicles involved in the accidents, number of blocked lanes 
and so on. The above framework is implemented using a Multiple Indicators-Multiple Causes 
(MIMIC) latent variable model. 
 
Model and Estimation 
 
The MIMIC model is a case of Structural Equation Modeling (SEM), also known as latent 
variable modeling, a thorough technique for testing hypotheses for the relations between 
observed and unobserved (latent) variables (Washington et al., 2010). The model consists of two 
components:  a measurement model which defines the relations between a latent variable and its 
indicators and a structural model which specifies the casual relationships among latent variables 
and explains the casual effects. MIMIC model considers the latent variable η  to be scalar and 
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relates the vector of indicators y  and the observed exogenous variables x  that cause η  by the 
following system of equations: 

 
= +
= +

η Γx ε
y Λη ζ

 (1) 

where Γ  and Λ  are matrices of unknown parameters to be estimated and ε  and ζ  are the error 
terms. Path analysis may be implemented to identify a MIMIC model (Figure 1). The unobserved 
endogenous latent variables are usually represented with ellipses, whereas the observed variables 
- either being causal  variables or indicators - may be represented by boxes. Simple associations 
between variables are depicted with two-way arrows (paths), whereas causal associations are 
depicted by unidirectional paths, the direction of which is from the independent to the dependent 
variable. Regression coefficients show the strength of the paths. 
 
SEM has been previously applied to many fields of transportation including transit system 
quality of service analysis (Karlaftis et al.; 2001), travel behavior modeling (Golob, 2003), mode 
choice modeling (Johansson et al., 2006), driver’s behavior modeling (Hassan and Abdel-Aty, 
2011) and public acceptability analysis of new technologies for traffic management (Chung et 
al., 2012). SEM models may be viewed as a generalized case of multivariate classical statistical 
models and suffer from similar constraints as classical statistical models, but outperform other 
techniques due to their ability to treat auto-correlated errors, non-normal data and latent variables 
(Karlaftis et al., 2001).  
 

 
Figure 1: The structure of the MIMIC model. 

 
IMPLEMENTATION AREA AND DATA 
 
Data come from Attica Tollway, a 65km tollway located at the boundaries of the metropolitan 
area of Athens (Greece). The dataset consists of 1287 detailed accident records and have been 
analyzed to detect and assess the occurrence of secondary accidents using both dynamic 
analytical and empirical based approaches (Vlahogianni et al., 2010; Vlahogianni et al., 2012; 
Imprialou et al., 2013). Moreover, the accident dataset has been enriched with traffic information 
in the form of volume and speed at the occurrence of the accidents, for the location of the 
accident, as well as the adjacent upstream location (up to 10 km upstream to reference point). 
Further, synchronized information on precipitation intensity was available by the Hydrological 
Observatory of Athens, operated by the National Technical University of Athens. All available 
variables – either measured or estimated – may be found in Table 1. These variables will be 
considered in structural equation modelling. 
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Table 1: Description of variables. 

Variable Description 
Continuous  

Clearance Time The incident duration in minutes 
Travel Speed Travel speed (km/h) at the occurrence of  the incident 
Hourly volume  Hourly volume (veh/h/lane) at the occurrence of  the incident 
Rainfall Intensity  Rainfall at the occurrence of the incident in mm/1min 

Categorical  
Type of Accident 0 for primary and 1 for secondary 
Severity 0 for only damages and 1 for injuries/fatalities and damages 
Nr. Lanes 1 to 3, 1:1 lane, 2: two, 3: more than 2 
Nr. Vehicles 1 to 3, 1:one, 2: two, 3: more than 2 vehicles involved 
Heavy Vehicle 0 to 1(Heavy Vehicle involved) 
Alignment 0 to 1(curve) 
Downstream Toll 0 for no toll 1 if adjacent to toll 
Downstream Entrance/Exit Ramp 0 for no toll 1 if adjacent to entrance/exit 
Downstream Tunnel 0 for no toll 1 if adjacent to tunnel 
Downstream Complex 0 for no complex geometry 1 if complex geometry 
Upstream Toll 0 for no toll 1 if adjacent to toll 
Upstream Entrance/Exit Ramp 0 for no toll 1 if adjacent to entrance/exit 
Upstream Tunnel 0 for no toll 1 if adjacent to tunnel 
Upstream Complex 0 for no complex geometry 1 if complex geometry 

Indicators  

T Duration of the disturbance propagated upstream of the incident 
(minutes) 

Lmax Maximum spatial extend of influence (km) 
 
Apart for the variables collected by the traffic management centre of Attica Tollway and the 
Hydrological Observatory of Athens, indicators are estimated based on a methodology for 
moving bottleneck tracking implemented by Imprialou et al. (2013). This method is based on 
both an analytical approach introduced by Kerner et al. (2004) and an empirical approach 
introduced by Chen et al. (2004). Moreover, this methodology will be further used to tag 
accidents as secondary or primary.  
 
Estimation of the temporal and spatial extend of incident’s influence to traffic 
 
Maximum length maxL and Duration T  of the disturbance propagated upstream of an incident is 
calculated based on both analytical and empirical approaches. We implement the methodology 
introduced in Imprialou et al. (2013), based on a combined analytical and empirical approach to 
estimate the maximum length maxL and the durationT  formed due to an incident on freeways. The 
analytical part of the methodology is based on the ASDA algorithms that tracks a moving jam at 
all times using data from consecutive loop detectors (Kerner et al., 2004). 
 
For two consecutive loop detectors (Qo, Qn) on a freeway road section that are L meters apart, at 
the occurrence of a moving jam at the detector Qn at time to, the ASDA model starts to calculate 
continuously the positions of the upstream front, xup

(jam)(t). After the downstream front of the 
moving jam is registered at the detector Qn at the later time t1, the ASDA model starts to 
calculate continuously the positions of the downstream front, xdown

(jam)(t). The positions of both 
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the fronts of the formulated wide moving jam caused by the primary incident may be calculated 
by using the following two equations (Kerner et al., 2004):  
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where index i and j represent detectors, whose time values at time t have to be used, Li+1, Lj are 
the coordinates of the corresponding detectors; t0

(i+1) indicates the time when the upsteram front 
of the moving jam has been observed at the detector i+1; t1

(j) indicates the time when the 
downstream front of the jam has been observed at the detector j; q0 

(i)(t) and w0
(i)(t) are the 

measured flow rate and the average vehicle speed at the detectors i upstream of a wide moving 
jam; qout

(j)(jam) and wmax
(j) are the measured flow rate and the average vehicle speed at the detector 

j downstream of the wide moving jam (Kerner et al., 2004). 
 
Moreover, a modified Chen’s et al. (2004) speed threshold algorithm is implemented in order to 
detect when the upstream and the downsteram front are observed at each detector. The upstream 
front of the moving jam is considered to have reached one detector - at some time - if the three 
following criteria are fullfilled: 

1. The speed at the detector is below the maximum speed threshold, 
2. The speed drop at the detector is greater than a certain threshold (estimated from real 

time data), 
3. The difference between the speeds at the detector and the next downstream detector is 

greater than the speed differential.  
 
In the case where the analytical manner is difficult to apply, influence areas are defined by the 
modified speed threshold algorithm that is sequentially applied to all detectors upstream of the 
incident: an adjacent upstream location controlled by a loop detector is considered to be 
congested by the time it fulfill the above three criteria. Congestion persists until these criteria are 
no longer fulfilled. By combining all these information about the duration of the congestion at 
each position in a time-space diagram, it is possible to “track” the actual boundaries of an 
influence area and also the exact manner of its formation and dissipation. 
 
Using the above approach the influence evolution of each incident to the upstream traffic may be 
identified. Figure 2 shows the upstream evolution of the incident influence for the available data. 
Evidently, the relationship between the Ls and T is quite complex and affected by various factors, 
such as the characteristics of the incident (accident type, severity, number of blocked lanes or 
vehicles involved etc), the weather (rain or not) and traffic conditions (speed and volume). 
Figure 2 shows a complex relationship between Ls and duration T that should be further 
researched and related t factors to be explained. 
 
The above approach to track the influence of an incident may be used to detect secondary 
incidents. Every incident that occurs within this spatiotemporal area can be characterized as 
secondary with a good level of certainty to the extent that the quality of loop detector data 
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permits. It is important to note that the secondary incident detection resulting from this method 
depend almost entirely on loop detectors performance.  
 

 
Figure 2: Influence evolution for a sample of accidents. 

We implement the above approach which results in identifying three different patterns of traffic 
disturbance propagation induced by an incident (seen in Figure 3).  
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Figure 3: Patterns of traffic disturbance propagation induced by an incident. 
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These patterns describe different formation and dissipation types that are probably related to the 
changing demand pattern that may be observed in real-time. Interestingly, a fourth category 
including 9% of the total patterns that did not follow any of the above patterns was discovered. 
This inhomogeneity in disturbance evolution upstream of an incident reveals complexities 
probably attributed to factors including geometry, volume, speed, the presence of tunnels or 
interchanges, weather conditions (Imprialou et al. 2013). 
 
Based on these patterns, a set of accidents that may be tagged as secondary were detected. 
Overall, it was found that 1.79% of the total number of accidents may be tagged as secondary. 
Although this percentage may be characterized as low, it is in line with the rest of the literature; 
according to Raub (1997) only 1.6% of the total incidents observed may be considered as 
secondary, whereas Moore (2004) has found that 3.27% of the available total set of incidents 
may be tagged as secondary. 
 
Factors Affecting the Influence of an Incident of Freeways 
 
A MIMIC model is constructed to account for the complex interrelationships between the 
different traffic, weather, geometry and accident related factors and the spatial and temporal 
influence of the incident. As the influence is not measured, the maximum length Lmax and the 
duration of the disturbance induced by the incident to the upstream traffic are used as indicators. 
The different modelling structures defined by the various possible interconnections between the 
available variables are evaluated based on the Akaike's Information Criterion (AIC). This is 
given by ln( ) 2AIC N MSE k= + , and the Bayesian information criterion (BIC) defined as 

2ln lnAIC l k N= − + , where k is the number of network weights, N the number of training 
paradigms (sample size), MSE the mean square error and l is the maximized value of the 
likelihood function for the estimated model. The selection of the optimum structure among a set 
of candidate models is done by choosing the model producing the smallest value of AIC and 
BIC. Figure 4 depicts the resulted SEM model. Numbers on the connections indicate the values 
of the coefficients, and the numbers in parentheses are the standard error and the p value. 
 
Due to the complexities involved in structural equation modeling, we followed a tedious 
evaluation procedure to assess the goodness of fit of the model developed. This approach include 
likelihood ratio tests for comparing the proposed model to the saturated one (the model that fits 
the covariances perfectly) and baseline models (model that includes the means and variances of 
all observed variables plus the covariances of all observed exogenous variables). It also 
compares the root mean squared error of approximation (RMSEA) along with the probability of 
RMSEA being below 0.05, the standardized root mean squared residual SRMR and the 
coefficient of determination or the various models  
 
Table 2 shows the goodness of fit statistics for the proposed SEM. A fit is close to the real data if 
the lower bound of the 90% CI is below 0.05 and is poor if the upper bound is above 0.10 
(Browne and Cudeck, 1993). A good fit provides SRMR less than 0.08 (Schermelleh-Engel et 
al., 2003). CD is similar to R2 for the entire model. Finally, a CFI above 0.95 demonstrates a 
good fit (Schermelleh-Engel et al., 2003). Based on the above values, Table 2 results are 
indicative of a SEM that provides a good fit. 
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Figure 4: Final SEM for describing the factors influencing the disturbance in traffic induced by 

an accident. 

 
As can be observed from the coefficients and p-values shown in Figure 4, for the measurement 
model, both indicator coefficients are positive and significant and may contribute to defining the 
influence of an incident to upstream traffic. Nevertheless, the disturbance duration T is a stronger 
indicator of the influence than maximum moving spatial extend of the disturbance Lmax.  
 
Apart from the indicator variables (Lmax and T), a strong positive relationship between the latent 
influence of the accident with the type of the accident (secondary or not), as well as the 
alignment (whether the accident occur on a curve or not) and the existence of entrance/exit 
ramps upstream of the accident location are detected. Weaker positive relations are observed 
between the latent variable and the traffic volume and the clearance time of and accident. 
Moreover, speed increases negatively influence upstream traffic. Interestingly, rainfall intensity 
is negatively related to the upstream traffic conditions just after the accident occurs. Although 
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this - at first - contradicts the understanding that adverse weather may create risky driving 
conditions, it may be intuitively explained by the tendency of the drivers to drive cautiously 
during rain. This may also be due to the effect of information provided to drivers - for example 
via VMS - during the course of driving or by reduced demand during adverse weather 
conditions. Nevertheless, it seems that the effect of weather - as introduced to the specific model 
- may not be adequately addressed. 
 

Table 2: Goodness of Fit statistics for model evaluation. 

Fit statistic Value 
 Likelihood ratio 

χ2 (p > χ2) – Saturated  12.774 (0.689)  
χ2 (p > χ2) - Baseline 192.172 (0.00)  

Population error 
RMSEA 0.000  
90% CI, lower bound 0  
90% CI,upper bound 0.025  
Probability RMSEA <= 0.05 0.924  

Baseline comparison 
CFI 1.00  
TLI 1.037  

Size of residuals 
SRMR 0.026  
CD 0.408  

 
Further, a significant result is that accident related characteristics (such as the number of blocked 
lanes, the severity of the accident or the traffic compositions) are introduced as predictors to the 
clearance time and not directly to the latent variable. Findings show that only three 
characteristics - the involvement of trucks in the accident, the number of blocked lanes as well as 
the existence of tolls adjacent to the area of the accident - are adequate to describe clearance 
time. These three variables may positively affect the clearance time and - by extension - the 
manner the disturbance is propagated upstream.  
 
CONCLUSIONS 
 
This paper proposed a SEM approach to develop explanatory relationships between traffic, 
geometry, accident and weather related factors and the manner an incident may influence 
upstream traffic conditions in both space and time. We considered the influence of an incident to 
be a latent variable, and we introduced two indicators to measure it: the duration and the 
maximum spatial extent of the disturbance induced by an incident and propagated backwards. 
Findings showed that the duration of the disturbance is a more powerful indicator than its 
maximum spatial extent. The accident type, the existence of tolls and the alignment upstream of 
the incident, as well as rainfall are the most influential predictors of accidents spatiotemporal 
influence. Moreover, speed, volume and the incident’s clearance time significantly contribute to 
the determination of the spatiotemporal influence to upstream traffic. Interestingly, the accident 
specific data (the number of lanes that were blocked by the incident, the severity of the incident 
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and the truck involvement) are only related to the clearance time and do not directly affect the 
spatiotemporal influence. 
 
Overall, the proposed modeling approach may reveal complex interrelations between traffic, 
geometry, accident and weather specific factors with far reaching implications to incident 
management and policy making. Apart from improving freeway operations at the occurrence of 
an incident, by applying for example traffic specific measures for filtering traffic and affecting 
short-term demand, the efficient representation of the influence propagation upstream of an 
incident may significantly improve the definition and detection of secondary accidents. 
Moreover, the quantification of the influence of an incident to upstream traffic may significantly 
improve the knowledge on the impact of incidents from various angles, including safety, 
environmental, financial and productivity perspectives.  
 
ACKNOWLEDGEMENTS 
 
This research has been co‐financed by the European Union (European Social Fund – ESF) and 
Greek national funds through the Operational Program "Education and Lifelong Learning" of the 
National Strategic Reference Framework (NSRF) ‐ Research Funding Program: THALES. 
Investing in knowledge society through the European Social Fund. The data used in this paper 
are a courtesy of Attica Tollway Operations Authority (http://www.aodos.gr/). 
 
 
REFERENCES 
 
Browne, M. W., and R. Cudeck. 1993. Alternative ways of assessing model fit. Reprinted in Testing Structural 
Equation Models, ed. K. A. Bollen and J. S. Long, pp. 136–162. Newbury Park, CA: Sage. 
Chung Y., Song T., Park J. (2012). Freeway booking policy: Public discourse and acceptability analysis Transport 
Policy, 24, 223–231   
Garib, A., Radwan, A., and Al-Deek, H. (1997). Estimating Magnitude and Duration of Incident Delays, J. Transp. 
Eng., 123(6), 459–466. 
Golob, T.F., 2003. Structural equation modeling for travel behavior research. Transportation Research Part B: 
Methodological 37 (1), 1–25. 
Hassan, H. M., Abdel-Aty, N. A. (2011). Analysis of drivers’ behavior under reduced visibility conditions using a 
Structural Equation Modeling approach Transportation Research Part F 14 614–625 
Imprialou, M.-I., Orfanou, F. P., Vlahogianni, E. I. and Karlaftis, M. G. (2013). Defining Spatiotemporal Influence 
Areas in Freeways for Secondary Accident Detection, Transportation Research Board 92nd Annual Meeting 
Compendium of Papers, 13-0955, 13-17 January, Washington DC, US. 
Jeong, Y.-S., Castro-Neto, M., Jeong, M. K. and Han, L. D., (2011). A wavelet-based freeway incident detection 
algorithm with adapting threshold parameters, Transportation Research Part C: Emerging Technologies, 19(1), 1-19. 
Johansson M.  V., Heldt T., Johansson P. (2006). The effects of attitudes and personality traits on mode choice 
Transportation Research Part A 40, 507–525. 
Joreskog, Karl and A. S. Goldberger (1975), “Estimation of a Model with Multiple Indicators and Multiple Causes 
of a Single Latent Variable,” Journal of the American Statistical Association, 70 (September), 631–639. 
Karlaftis, M. G., S. Latoski, P., Richards, J. Nadine and K. C. Sinha. (1999). ITS Impacts on Safety and Traffic 
Management: An Investigation of Secondary Crash Causes, Journal of Intelligent Transportation Systems, 5(1), 39-
52. 
Karlaftis, M.G., Golias, I., Papadimitriou, E. (2001) Transit Quality as an Integrated Traffic Management Strategy: 
Measuring Perceived Service, Journal of Public Transportation, Vol. 4, No. 1, 27-44. 
Kerner, B.S., Rehborn, H., Aleksic, M., Haug, A. “Recognition and Tracing of Spatial-Temporal Congested Traffic 
Patterns on Freeways”, Trans. Rec. C, Vol. 12, 2004, pp. 369-400. 

http://www.aodos.gr/


International Conference Road Safety and Simulation                                 RSS2013 23-25 October 2013 Rome, Italy 

12 
 
Vlahogianni, E. I., Karlaftis, M. G., Papageorgiou, N. 

Khattak A., X. Wang, H. Zhang, iMiT: A tool for dynamically predicting incident durations, secondary incident 
occurrence, and incident delays, IET Intelligent Transport Systems, 6:2, Institution of Engineering and Technology 
2012.  
Kwon J., Mauch M. and Varaiya P. (2006). Components of Congestion: Delay from Incidents, Special Events, Lane 
Closures, Weather, Potential Ramp Metering Gain, and Excess Demand, Transportation Research Record: Journal of 
the Transportation Research Board, 1959(1), 84-91. 
Mohamed Ahmed, Mohamed Abdel-Aty A data fusion framework for real-time risk assessment on 
freewaysTransportation Research Part C 26 (2013) 203–213 
Moore, J.E., Giuliano, G. and Cho, S. (2004). Secondary Accident Rates on Los Angeles Freeways. Journal of 
Transportation Engineering 130.3: 280–285. 
Ozbay, K. and Nayan, N. (2006). Estimation of incident clearance times using Bayesian Networks approach, 
Accident Analysis & Prevention, 38(3), 542-555. 
Raub, R. A. Secondary crashes: An important component of roadway incident management, Transportation. 
Quarterly, (1997). Vol. 51, No. 3, 1997, pp. 93–104. 
Schermelleh-Engel, K., Moosbrugger, H., Muller, H., 2003. Evaluating the fit of structural equation models tests of 
significance and descriptive goodness-of-fit measures, Methods of Psychological Research Online, 8(2), 23–74.  
Sun, C. and Chilukuri, V. (2010). ”Dynamic Incident Progression Curve for Classifying Secondary Traffic Crashes.” 
J. Transp. Eng.,136(12), 1153–1158. 
Vlahogianni E.I., Karlaftis, M.G., Golias, J. C. and Halkias, B. (2010) Freeway Operations, Spatio-temporal Incident 
Characteristics, and Secondary-Crash Occurrence, Transportation Research Record: Journal of the Transportation 
Research Board, 2778, 1-9. 
Vlahogianni, E. I., Karlaftis, M. G. and Orfanou, F. P. (2012). Modeling the effects of weather and traffic on the risk 
of secondary incidents, Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 16(3), 
109-117.  
Washington, S.P., Karlaftis, M.G., and Mannering, F.L. (2010). Statistical and econometric methods for 
transportation data analysis. 2nd Edition, Boca Raton, FL: CRC Press. 


	October 23-25, 2013
	Rome, Italy
	Factors Influencing Freeway Traffic Upstream of an Incident

