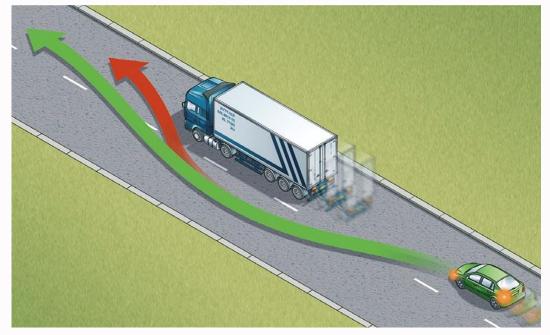


Passing Sight Distance Regulations Vs Reality

Konstantinos Apostoleris, Phd Candidate, Civil Engineer Stergios Mavromatis, Associate Professor Vassilios Matragos, Phd Candidate, Civil Engineer Basil Psarianos, Professor Fotis Mertzanis, Phd, Civil Engineer Kiriakos Amiridis, Phd, Rural and Surveing Engineer

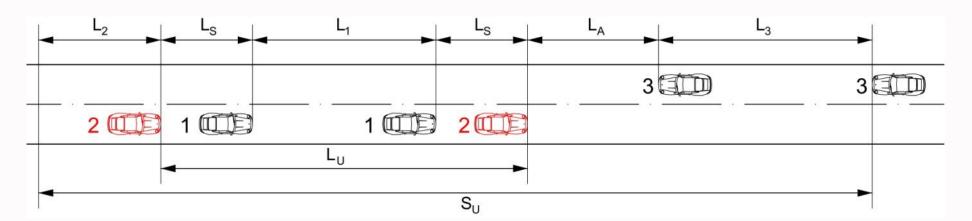
National Technical University of Athens (NTUA)



Objective of the Study

The objective of the present study is to investigate the length required for a complete and safe overtaking procedure at various speeds and for different types of vehicles, taking also into account the influence of the road longitudinal slope.

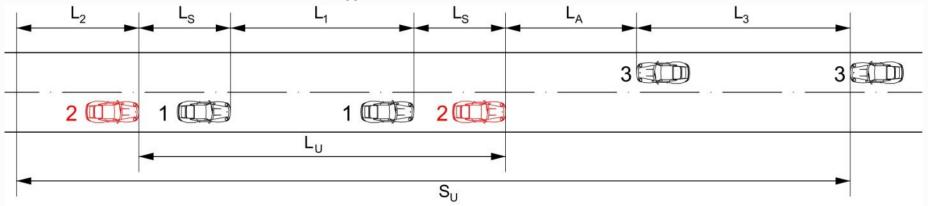
At the same time, measurements were carried out with appropriate equipment to determine the relationship between speed and acceleration of a newer technology vehicle in order to compare the results with the currently used regulations. The purpose of this analysis is to set the basis for the better determination of limiting PSD values in order to harmonize theory with practice.



Proposed Methodology

The overtaking process involves three vehicles with different characteristics:

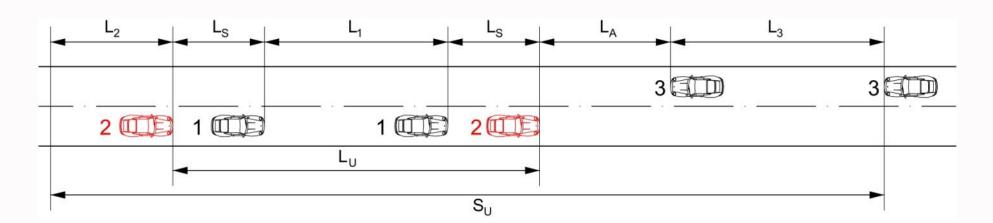
- 1. The passed vehicle 1, which may be considered moving at a constant speed, slightly below the speed limit of the road (e.g. 10~20km/h below the posted speed limit).
- 2. The passing vehicle 2, which may be considered moving at a constant speed until it decides to overtake. From the moment starting the overtaking process and until its completion, a smoothly accelerated motion is assumed; and
- 3. The vehicle 3 that is moving in the opposite direction, which may be considered in favor of safety as being driven at a constant speed equal to the V_{85} operating speed.



Proposed Methodology

The required overtaking length Su depends on the following factors:

- 1. The decision time for the driver of vehicle 2 to proceed with the overtaking process. For this period of time, vehicle 2 is driven at a constant speed same with vehicle 1 speed.
- 2. The length Lu where the passing Vehicle 2 has travelled from the beginning of the overtaking process until completion. In this case, vehicle 2 achieves constant acceleration, which depends on the vehicle's technical characteristics and the longitudinal slope of the road.
- 3. The safety distance L_A between vehicles 2 and 3 when the overtaking process is completed.
- 4. The distance L_3 traveled by vehicle 3 during the overtaking process. At this time vehicle 3 is moving at a constant speed equal to V_{85} operating speed.



Assumptions

For the present research, the following assumptions were made:

- 1. Decision time $t_{dec.}$ was applied equal to 2 seconds.
- 2. Length Ls was set to 20 meters.
- 3. Speed V_1 of vehicle 1 was considered 20km/h lower than the design speed.
- 4. Operational speed V_{85} was considered 20km/h higher than the design speed.
- 5. Safety margin L_A applied as 50 meters.
- 6. Speed of the passing vehicle shall never exceed the operational speed V_{85} while the overtaking procedure is active (20km/h higher than the design speed).

Analysis and Relationship with current regulations

General analysis for many longitudinal slopes and several acceleration values has been completed and the results were primarily correlated with the limits proposed in the Greek Regulations OMOE-X and US Regulations (AASHTO), versions 2004 and 2018.

TABLE 3: Required PSD in Respect to the Longitudinal Slope, for Acceleration values equal to 2.0 m/s²

	Constant vehicle acceleration during overtaking procedure equal to α =2.0 m/s ²													
Ve		Road Longitudinal Slope / (+) Upgrade, (-) Downgrade OMOE AASHTO												
(km/h)	10%	8%	6%	4%	2%	0%	-2%	-4%	-6%	-8%	-10%	ONICE	2004	2018
40	362	346	334	325	318	312	307	304	300	297	295	425	270	140
50	423	403	388	377	368	361	356	351	347	343	340	475	345	160
60	483	459	442	429	419	411	404	398	394	390	386	500	410	180
70	544	516	496	481	470	460	452	446	440	436	432	525	485	210
80	604	573	551	534	520	509	501	493	487	482	477	575	540	245
90	665	630	605	586	571	559	549	541	534	528	523	625	615	280
300	Required length less than the one provided for Greek and AASHTO (2004) regulations													

Required length less than the one provided for Greek and greater than AASHTO (2004) regulations

600

Required length greater than the one provided for in Greek and AASHTO (2004) regulations

Grades allowed by exception for the specific design speed

Analysis and Relationship with current regulations

From the general analysis some conclusions were exported:

- A realistic conservative acceleration value of α =1.5 m/s² can be achieved with a vehicle of 100 hp, while for this acceleration value the required passing sight distance is significantly shorter in many cases than the minimum value presented in Greek regulations.
- AASHTO regulations (2018) has lower limits, and the required PSD in all cases is significantly higher from the calculated values.
- Previous version of AASHTO Regulations (2004) has more realistic thresholds, especially on lower design speed roads (lower than 60km/h).
- For higher design speed roads, AASHTO limit values (2004) converge to Greek regulation limits.
- Vehicles with higher horsepower, which are presently widely used on the National and Rural Road network, achieve a safe overtaking procedure much shorter than required by the Greek and previous AASHTO regulations (2004), but are not sufficient according to the recent AASHTO limits (2018).
- In the German RAL-2012 design guidelines, the required PSD is set to 600m, which is adequate for almost all vehicles to complete a safe overtaking procedure for any speed less than 90km/h.

Investigation for different types of vehicles

As a second step, alternative scenarios for vehicles weighting $1000 \sim 1500$ kg, with a horsepower of 80 to 300 HP were considered in relation to the value of the acceleration (α) that vehicle 2 may achieve.

<u>TABLE 1</u>: Acceleration Values (m/s²), for Vehicles Weighing 1000kg in Respect to the Horsepower.

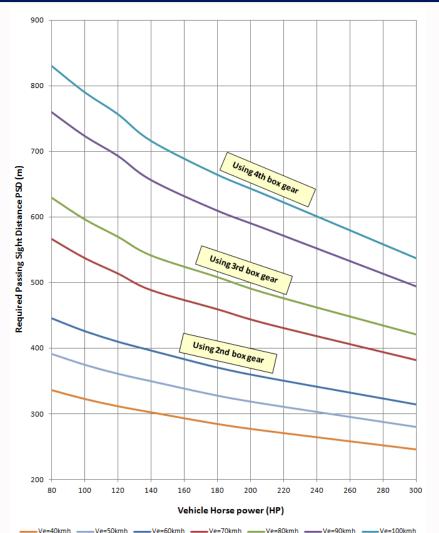
Range of	Poy Coor	Horsepower (HP)										
Velocity	Box Gear	80	100	120	140	180	210					
40-80	2nd	1,70	2,00	2,20	2,50	3,20	3,60					
60-100	3rd	1,20	1,40	1,60	1,80	2,20	2,50					
80-120	4th	0,90	1,05	1,20	1,40	1,70	1,90					

<u>TABLE 2</u>: Acceleration Values (m/s²), for Vehicles Weighing 1500kg in Respect to the Horsepower.

Range of	Box Gear		Horsepower (HP)										
Velocity		80	100	120	140	180	210	300					
40-80	2nd	1,30	1,50	1,70	1,90	2,40	2,80	4,50					
60-100	3rd	0,90	1,05	1,20	1,40	1,70	2,00	3,20					
80-120	4th	0,70	0,80	0,90	1,05	1,30	1,50	2,50					

Investigation for different types of vehicles

The technical characteristics of the vehicles, and therefore the acceleration they can develop at the time of the overtaking procedure, is greatly influence the required PSD. In the present study, an analysis was performed by considering the average acceleration values presented above.


TABLE 4: Required PSD for 0% Grade and Acceleration Values Depending on Horsepower and Vehicle Weight

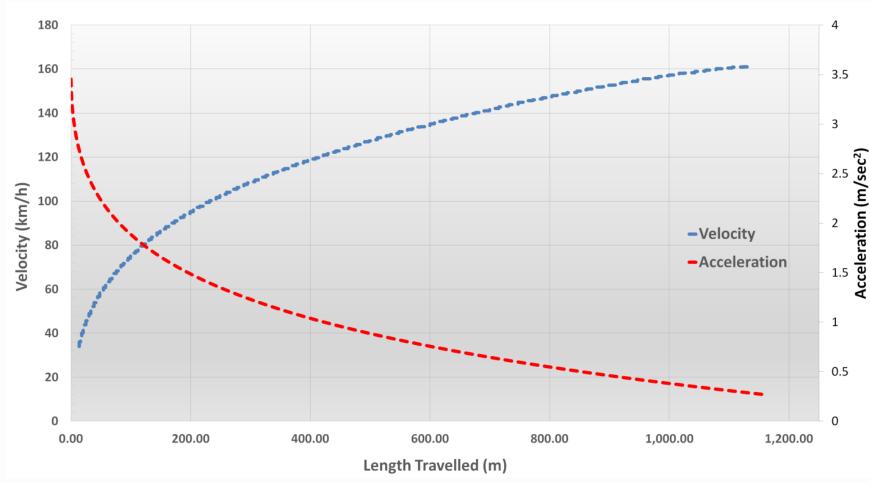
				Vehicle	e Weight	1500kgr						
Ve			Vehicle	Horsepov	wer (HP)			OMOE	AAS	НТО		
(km/h)	80	100	120	140	180	210	300	UNIOE	2004	2018		
40	336	323	311	302	284	274	245	425	270	140		
50	391	374	361	349	328	314	280	475	345	160		
60	446	426	410	397	371	355	314	500	410	180		
70	566	537	514	488	459	437	382	525	485	210		
80	630	597	570	541	508	483	421	575	540	245		
90	760	723	693	656	610	581	494	625	615	280		
100	830	790	757	716	664	633	537	675	670	320		
300	Required length less than the one provided for Greek and AASHTO (2004) regulations											
400	Required length less than the one provided for Greek and greater than AASHTO (2004) regulations											
500	Required	length gro	eater than	the one p	rovided fo	or in Greel	k and AAS	HTO (2004) regulatio	ons		

Investigation for different types of vehicles

From the above analysis some more conclusions were exported:

- For an average vehicle with a power of 140 hp, the length required for overtaking is usually shorter in respect to the Greek Regulations OMOE-X and German Regulations RAL-2012, especially on roads where the design speed is less than 80km/h.
- On the other hand, for the same vehicle, the values provided in the previous AASHTO Regulations (2004) appear to approach the values derived from the present analysis for an average vehicle.
- The required PSD is always higher than the one suggested in the new AASHTO guidelines (2018).

Figure 3 - Required PSD as related to vehicle horsepower (1500kg weight) and design speed for longitudinal slope equal to 0%


Figure 4 – VERICOM VC4000DAQ accelerometer

In order to further investigate literature results, measurements were made in the field with appropriate equipment and actual speed and acceleration data were recorded with a modern standard vehicle.

- A common large vehicle TOYOTA-CHR Hybrid 1800cc with 122 hp and manufacture year 2019 was used.
- Measurements were made using the VERICOM VC4000 accelerometer, which accurately records vehicle speed every 0.1 sec, as well as the longitudinal acceleration of the vehicle with a step of 0.01 sec.
- The measurements were carried out on a freeway road section with a very low curvature rate, without traffic in order to allow the vehicle to make the acceleration process unobstructed up to the vehicle speed limit.
- The average longitudinal slope of the motorway was approximately 1%, which was taken into account in the final results.
- The measurements were made on a dry, clean pavement and with high tire grip between tires and pavement.

Figure 5 – For Toyota CHR (122hp)

Measurements of vehicle speed and acceleration in respect to the distance covered were completed.

Based on the measurements, a mathematical relationship for the acceleration of the CHR Hybrid vehicle in respect to the instant vehicle speed was developed.

 $\alpha = -0.0695 * V + 3.32 - s * g$ (3)

V (m/sec) = the instant vehicle speed of CHR Hybrid (122HP)

According to Equation 3 and the mathematical equations of accelerating movement (α =dV/dt and V=dS/dt), the following equations were determined for the <u>instant vehicle speed</u> for CHR Hybrid and the <u>distance travelled</u> in respect to vehicle's running time.

$$V = \frac{V_0 - \frac{3.32 - s \cdot g}{0.0695}}{1 + 0.0695 \cdot t} + \frac{3.32 - s \cdot g}{0.0695} \quad (4) \qquad S = \frac{V_0 - \frac{3.32 - s \cdot g}{0.0695}}{0.0695} \cdot ln(1 + 0.0695 \cdot t) + \frac{3.32 - s \cdot g}{0.0695} \cdot t \quad (5)$$

where:V (m/sec) =the instant vehicle speed of CHR Hybrid (122HP)S (m) =the travelled distance by CHR Hybrid (122HP)
$$V_o$$
 (m/sec) =the initial vehicle speed of CHR Hybrid (122HP)s (-) =the longitudinal grade of the road (+) for uphill and (-) for downhill.g (m/sec²) =the gravity acceleration, equal to 9,81m/sec².t (sec) =the travel time of the vehicle CHR Hybrid (122HP)

Above equations refers only to TOYOTA-CHR Hybrid (1800cc, 122HP, 2019) that were used in the present study.

			R	equired P	SD for ve	hicle TO	YOTA CH	R-Hybrid	d (122HP,	1800cc, 20)19)			
Х <i>І</i> - (І Да)			Ro	ad Longit	udinal Slo	ope / (+) U	J pgrade, (-) Downg	rade			OMOE	AASI	HTO
Ve (km/h)	10%	8%	6%	4%	2%	0%	-2%	-4%	-6%	-8%	-10%	OMOE 425	2004	2018
40	299	290	282	276	270	266	262	259	256	253	251	425	270	140
50	363	350										475	345	160
60	436 418 402 389 378 368 360 353 348 343 338									500	410	180		
70	519 493 472 454 439 426 415 405 397 390 385												485	210
80	618	580	550		I ASS I		ded (25)	m ~ 63r	n) for th		433	575	540	245
90	738	683	641				×				485	625	615	
			Cons	stant OV	ertaking	g proced	ure of T	oyota C	HR in re	espect $\frac{2}{2}$.0 m/s ²	1		
Ve (km/h)			Ro	ad L	to the c	constant	accelera	ation of	2,0m/se	c^2	-	OMOE	AAS	HTO
	10%	8%	6%	4%	2%	0%	-2%	-4%	-6%	-8%	-10%	ONIOL	2004	2018
40	362	346	334	325	318	312	307	304	300	297	295	425	270	140
50	423	403	388	377	368	361	356	351	347	343	340	475	345	160
60	483	459	442	429	419	411	404	398	394	390	386	500	410	180
70	544	516	496	481	470	460	452	446	440	436	432	525	485	210
80	604	573	551	534	520	509	501	493	487	482	477	575	540	245
90	665	630	605	586	571	559	549	541	534	528	523	625	615	280

			R	equired P	SD for ve	hicle TOY	YOTA CH	R-Hybrid	d (122HP,	1800cc, 20	19)			
V. (lass /la)			Ro	ad Longit	udinal Slo	ope / (+) U	J pgrade, (-) Downg	rade			ΟΜΟΕ	AASI	OTH
Ve (km/h)	10%					OMOE	2004	2018						
40	299	290	282	276	270	266	262	259	256	253	251	425	270	140
50	363	350	340	330	322	315	310	305	301	297	294	475	345	160
60	436	418	402	389	378	368	360	353	348	343	338	500	410	180
70													485	210
80												575	540	245
90	738	683	641	607	580	557	538	522	507	495	485	625	615	
			Cons	stant vehi	cle acceler	ration dur	ring overt	aking pro	cedure eq	ual to $\alpha=2$.0 m/s ²		i	
Req	uired ler	ngth for	the over	taking	al Slo	ope / (+) U	pgrade, (-) Downgi	rade			OMOE	AAS	HTO
-	ure is hig	U		U	ed [%]	0%	-2%	-4%	-6%	-8%	-10%	ONIOL	2004	2018
-	es (80 ~	-		_	18	312	307	304	300	297	295	425	270	140
	`			U	58	361	356	351	347	343	340	475	345	160
long	Iongitudinal slope (+6% ~ +10%). 9 411 404 398 394 390 386 500 410 180													180
70	544	516	496	481	470	460	452	446	440	436	432	525	485	210
80	604	573	551	534	520	509	501	493	487	482	477	575	540	245
90	90 665 630 605 586		571	559	549	541	534	528	523	625	615	280		

			Re	equired P	SD for ve	hicle TOY	OTA CH	R-Hybrid	l (122HP,	1800cc, 20)19)			
			Roa	nd Longit	udinal Slo	ope / (+) U	pgrade, (-) Downgi	rade			OMOE	AAS	НТО
Ve (km/h)	10%	8%	6%	4%	2%	0%	-2%	-4%	-6%	-8%	-10%	OMOE	2004	2018
40	299	290	282	276	270	266	262	259	256	253	251	425	140	
50	363	350	340	330	322	315	310	305	301	297	294	475	345	160
60	436	418	402	389	378	368	360	353	348	343	338	500	410	180
70	519 493 472 454 439 426 415 405 397 390 385											525	485	210
80	618 580 550 526 506 489 474 461 450 441 433											575	540	245
90	0 738 683 641 607 580 557 538 522 507 495 485										485	625	615	280
		Overal	l time for	the overta	aking pro	cedure (se	ec) - Drive	er decision	n time, tak	ken as 2.0s	ec, is not i	ncluded		
Ve (km/h)			Roa	nd Longit	udinal Slo	ope / (+) U	pgrade, (·) Downgi	rade			Comments		
ve (kiii/ii)	10%	8%	6%	4%	2%	0%	-2%	-4%	-6%	-8%	-10%			
40	7.38	6.99	6.66	6.36	6.12	5.91	5.73	5.58	5.45	5.34	5.24			
50	7.83	7.38	6.99	Addit	tional 1 ₅	,2 sec ~	2,7sec n	needed	5.58	5.45	5.34	 The influen	ce of the lo	ngitudinal
60	8.37	7.83	7.37	for	the over	taking p	procedui	e in	5.73	5.58	5.45	The influence of the longitudinal slope is particularly important		
70	9.04	8.36	7.82	С	ase of +	6% Vs -	-6% slop	be	5.90	5.73	5.58	and should		
80	9.87	9.02	8.36	7.81 7.36 6.97 6.64 6.35 6.10 5.90 5.72 in determining the recent									ing the requ	aired PSD.
90	10.97	9.86	9.01	8.35	7.80	7.35	6.96	6.63	6.34	6.10	5.89			

	Speed range achieved from the passing vehicle (km/h)													
X ₂ (1 (1-)				Road Long	-		0	grade, (-) D		(- /			Commente
Ve (km/h)	10%	8%	6%	4%	2	%	0%	-2%	-4%	-6%	%	-8%	-10%	Comments
40	20 ~ 54	20 ~ 56	20 ~ 58	20 ~ 60	20	- 60	20 ~ 60	20 ~ 60	20 ~ 60	20 ~	60	20 ~ 60	20 ~ 60	
50	30 ~ 62	30 ~ 64	30 ~ 66	30 ~ 68	30 -	- 70	30 ~ 70	30 ~ 70	30 ~ 70	30 ~	70	30 ~ 70	30 ~ 70	The passing vehicle starts the overtaking procedure with a speed
60	40 ~ 70	40 ~ 72	40 ~ 74	40 ~ 76	40	- 78	40 ~ 80	40 ~ 80	40 ~ 80	40 ~	80	40 ~ 80	40 ~ 80	20km/h lower than the design
70	50 ~ 77	50 ~ 80	50 ~ 82	50 ~ 84	50	- 87	50 ~ 89	50 ~ 90	50 ~ 90	50 ~	90	50 ~ 90	50 ~ 90	speed, while the maximum speed
80	60 ~ 85	60 ~ 87	60 ~ 90	60 ~ 92	60	· 94	60 ~ 97	60 ~ 99	60 ~ 100	60 ~	100	60 ~ 100	60 ~ 100	does not exceed the design speed plus 20 km/h
90	70 ~ 92	70 ~ 95	70 - 98	70 ~ 100	70 ~	102	70 ~ 104	70 ~ 107	70 ~ 109	70 ~	110	70 ~ 110	70 ~ 110	
		Acc	eleration	range achiev	ed fro	m the	passing veh	nicle (m/s ²) ·	• The influe	nce of	the lo	ongitudinal s	slope is inclu	uded
Ve (km/h)				Road Long	gitudi	nal Sl	ope / (+) Up	grade, (-) D	owngrade					Comments
ve (kiii/ii)	10%	8%	6%	4%	2	%	0%	-2%	-4%	-6%	%	-8%	-10%	Comments
40	1.95 ~ 1.29	2.15 ~ 1.45	2.35 ~ 1.6	0 2.54 ~ 1.77	2.74	~ 1.97	2.93 ~ 2.16	3.13 ~ 2.36	3.33 ~ 2.55	3.52 ~	2.75	3.72 ~ 2.95	3.91 ~ 3.14	The acceleration that can be
50	1.76 ~ 1.14	1.96 ~ 1.29	2.15 ~ 1.4	⁵ ^{2.1} 50%	5 ~ 1	05%	6 higher	accelera	ation ³⁶	3.33 ~	2.56	3.53 ~ 2.75	3.72 ~ 2.95	achieved during the overtaking
60	1.57 ~ 0.99	1.76 ~ 1.14	1.96 ~ 1.3	0 2			U	ct to $+6%$	17	3.14 ~	2.36	3.33 ~ 2.56	3.53 ~ 2.76	procedure varies significantly
70	1.37 ~ 0.84	1.57 ~ 0.99	1.77 ~ 1.1	4 1.9		570 1			7	2.94 ~	2.17	3.14 ~ 2.37	3.34 ~ 2.56	depending on the speed and the
80	1.18 ~ 0.70	1.38 ~ 0.85	1.57 ~ 1.0	0 1.77 ~ 1.15	1.97 -	~ 1.30	2.16 ~ 1.46	2.36 ~ 1.61	2.55 ~ 1.78	2.75 ~	1.98	2.95 ~ 2.17	3.14 ~ 2.37	longitudinal slope of the road
90	0.99 ~ 0.56	1.18 ~ 0.70	1.38 ~ 0.8	5 1.58 ~ 1.00	1.77 -	~ 1.15	1.97 ~ 1.30	2.16 ~ 1.46	2.36 ~ 1.62	2.56 ~	1.78	2.75 ~ 1.98	2.95 ~ 2.18	section, affecting the required PSD

Conclusions

- PSD provided by the Greek Regulations is significantly higher than the required. On the other hand, the AASHTO regulations, as they apply today (7th edition 2018), seem to provide very low values for the required overtaking length. Values in the 5th Edition (2004) of AASHTO appear to be more realistic, while 600m proposed by the German RAL-2012 guidelines seems to meet the requirements of a typical passenger car for the recommended speed of 90km/h applied in design class EKL3.
- The longitudinal slope of the road <u>has a significant influence</u> on the desired visibility threshold for overtaking and <u>should be considered in determining the acceptable PSD limits in regulations</u>.
- Increased acceleration even for small vehicles should lead to reconsider the conservative assumptions made in regulations currently used in several countries. From the preceding analysis it becomes apparent that even for a vehicle with 100hp horsepower, the required overtaking length is significantly lower in many cases than the minimum value provided by the Greek, US and German Regulations.
- Vehicles with higher horsepower can safely complete the overtaking procedure of a slow-moving vehicle in a shorter length. Nevertheless, the present analysis shows that the reduction is relatively small, especially on roads with a low design speed (less than 60km/h).

Thank You for your attention!

