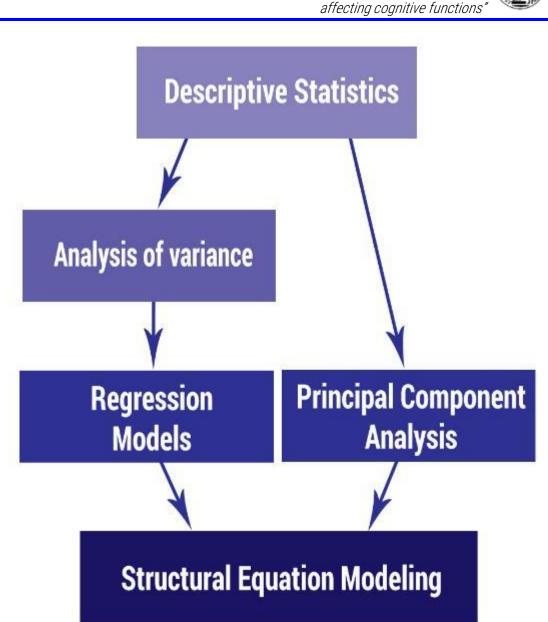


National Technical University of Athens School of Civil Engineering Department of Transportation Planning and Engineering

Traffic and safety behaviour of drivers with neurological diseases affecting cognitive functions PART 2/2

A Doctoral Thesis presentation by

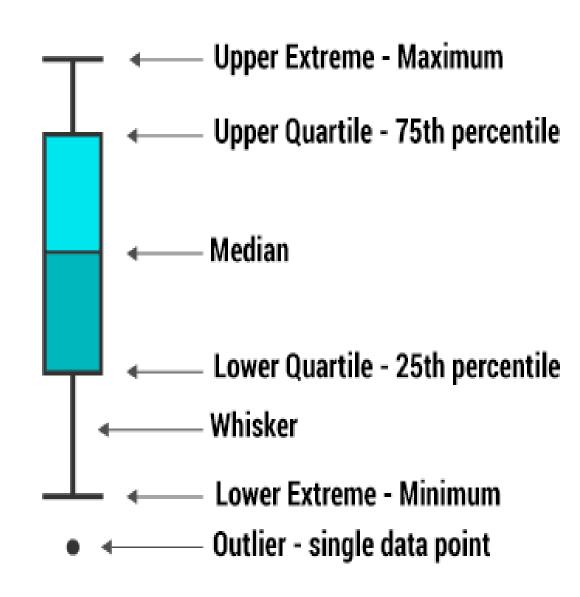

Dimosthenis I. Pavlou

Advisory board: G. Yannis, Professor, NTUA J. Golias, Professor, NTUA S.G. Papageorgiou, Associate Professor, NKUA

Athens, September 2016

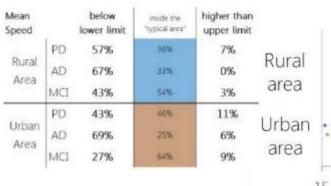
Statistical Analysis

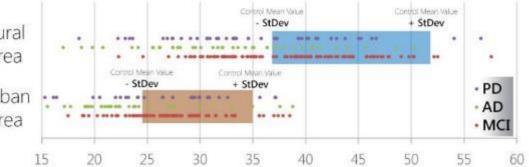
- » In chapter 5 an innovating statistical analysis methodology has been developed and presented in order to investigate all the critical parameters that affect reaction time, accident probability, driving performance and driving errors.
- » The developed methodology consists of five individual analyses:
 - » Descriptive analysis
 - » Analysis of variance
 - » Regression analysis
 - » Principal Component Analysis
 - » Structural Equation Model analysis
- » All different statistical analyses provide remarkable findings for this PhD dissertation research.



Dimosthenis I. Pavlou "Traffic and safety behaviour of drivers with neurological diseases affecting cognitive functions"

Step 1 - Descriptive statistics


- » In the first statistical step, the descriptive analysis of all the experiment variables took place, which allows for a first understanding of the large number of parameters examined.
- » 126 boxplots were developed correlating mean speed, time headway, lateral position, steering angle variability, reaction time at unexpected incidents, accident probability, and driving errors, with traffic volume, driving area, regarding age and cerebral disease of the participants.
- » A **correlation table** is investigating any of a broad class of statistical relationships between driving simulator variables


Step 1 - Descriptive statistics (Mean Speed)

Dimosthenis I. Pavlou "Traffic and safety behaviour of drivers with neurological diseases affecting cognitive functions"

Mean Speed (km/h)

Step 1 - Synthesis of Descriptive statistics

- » All three cerebral pathologies examined lead to lower driving speeds in all examined conditions (AD group has the lowest mean speeds among the other participants)
- » AD group in urban area with low traffic volume when using the mobile phone have higher variability in steering angle
- » AD and PD groups have the worst reaction times (40% worse than controls)
- » The mobile phone use has a significant effect on reaction time for AD and PD groups
- » AD and PD drivers have the highest accident probability, and especially when conversing on the mobile phone their accident probability is climbing to 50%.
- » High traffic volume **leads to more mistakes** for all participants, as it is a more complex environment.

Step 2 - ANOVA findings

- » The first ANOVA indicated that the presence of a neurological disease affecting cognitive functions was found to significantly affect in both road environments: mean speed, mean speed variability, time headway, steering angle variability, time to lane crossing, time to collision, time to collision variability, reaction time and accident probability.
- » The second ANOVA regarding questionnaire about the driving habits and the driving behaviour indicated that:
 - » Patients self-reported, that they are likely to avoid using their vehicle because they are afraid of their driving abilities which they admit that have been deteriorated over the years.
 - » This awareness of deteriorated driving performance due to brain pathologies is of notable significance; it means that this group of drivers tries to **self-regulate their driving**.

Step 3 - Regression analyses 1/2

In the third statistical step, within the framework of the explanatory analysis, the development of Regression Models took place regarding key performance parameters
 28 General Linear Models (GLMs) were extracted regarding the effect of MCI, AD and PD on: mean speed, time headway, lateral position, steering angle variability, reaction time at unexpected incidents, accident probability, and driving errors

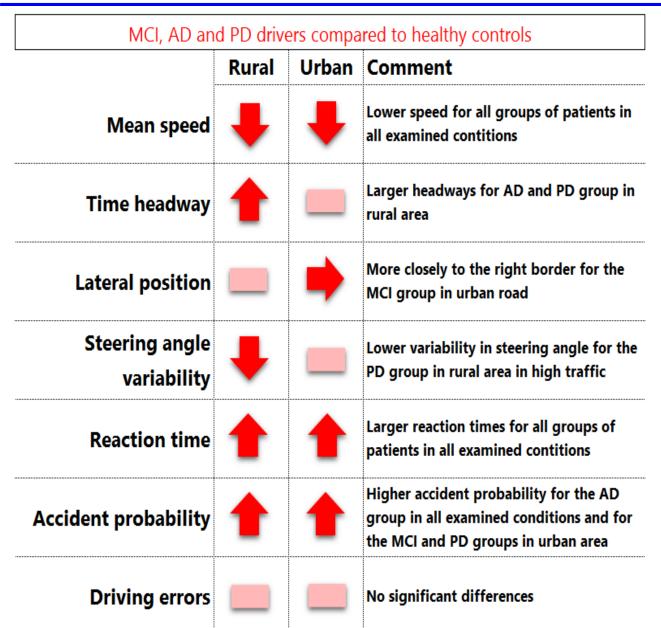
Parameter Estimates of the GLM Dependent variable: Mean Speed (km/h) Model: (Intercept), Disease, No distraction Condition													
		Lov	v Traffi	С									
			Hypot	hesi	s Test			Hypot	hesi	s Test			
Parameter	В	Std. Error	Wald Chi- Square	ⁱ df Sig.		В	Std. Error	Wald Chi- Square	df	Sig.			
(Intercept)	44,8	1,2	1508,3	1	0,000	42,1	1,0	1942,3	1	0,000	ea		
MCI	-5,3	1,7	9,2	1	,002	-5,0	1,5	11,8	1	,001			
AD	-10,8	2,0	28,2	1	,000,	-8,4	1,7	25,8	1	,000	Rural Area		
PD	-9,3	2,1	19,6	1	,000,	-8,3	1,8	20,2	1	,000			
Controls	0 ^a					0 ^a							
(Scale)	63,808 ^b	7,9				47,559 ^b	5,8						
			Hypot	hesi	s Test			Hypotl					
Parameter		Std.	Wald Chi-		0:		Std.	Wald Chi-	df	0:			
	В	Error	Square	df	Sig.	В	Error	Square	ar	Sig.			
(Intercept)	30,1	0,9	1047,4	1	0,000	27,8	0,7	1417,1	1	0,000	rea		
MCI	-2,0	1,4	2,0	1	,160	-2,3	1,1	4,5	1	,034	Urban Area		
AD	-4,3	1,6	7,0	1	,008	-4,2	1,3	10,4	1	,001	Jrba		
PD	-3,8	1,9	4,1	1	,042	-3,1	1,4	4,7	1	,030			
Controls	0 ^a					0 ^a							
(Scale)	33,815 ^b	4,7				19,695 ^b	2,8						
	a. Set to zer b. Maximum		this paramete estimate.	er is re	edundant.								

		Pa	aramete	er E	Estimat	tes of 1	the Gl	_M			
	Dep	ender	nt varial	ble	: Read	ction ⁻	Time		ec)		
	Model	: (Inte	rcept),	Dis	sease, I	No dist	tracti	on Cond	liti	on	
		Low	ı Traffi	С							
			Hypotl	hesi	s Test			Hypot			
Parameter	В	Std. Error	Wald Chi- Square		Sig.	В	Std. Error	Wald Chi- Square	df	Sig.	
(Intercept)	1625,9	86,3	354,7		0,000	1752,7	98,4	316,9	1	0,000	ea
MCI	379,7	130,1	8,5	1	,004	439,9	150,4	8,6	1	,003	Rural Area
AD	829,7	150,6	30,4		,000	748,6	170,5	19,3	1	,000	Bun
PD	584,0	158,0	13,7	1	,000	552,6	194,1	8,1	1	,004	
Controls	0ª					0ª					
(Scale)	350248,06 ^b	43953,0				503994,57 ⁶	61344,3				
			Hypotl	hesi	s Test			Hypotl			
Parameter		Std.	Wald Chi-	df Siq.			Std.	Wald Chi-	df Sig.		
	В	Error	Square	u	Sig.	В	Error	Square	ui	Siy.	
(Intercept)	1385,8	69,9	392,7	1	0,000	1323,6	55,1	577,1	1	0,000	rea
MCI	51,1	102,1	0,3		,617	175,9	82,0	4,6	1	,032	Urban Area
AD	476,8	118,9	16,1		,000	361,3	99,6	13,2	1	,000	Urb
PD	232,5	133,0	3,1		,080,	265,1	107,9	6,0	1	,014	
Controls	0ª					0ª					
(Scale)	166258,12 ^b					103214,49 ^b	15472,5				
	a. Set to zer b. Maximum		this paramete estimate.	r is re	dundant.						

Devenueles Estimates afthe OLM												
Parameter Estimates of the GLM												
Dependent variable: Accident Probability												
Model: (Intercept), Disease, No distraction Condition												
		Low	ı Traffi	С								
			Hypotl	hesi	s Test			Hypot	hesi	s Test		
Parameter		Std.	Wald Chi-	df	Siq.		Std.	Wald Chi-	df	Sig.		
	В	Error	Square	u	oiy.	В	Error	Square	u.	oig.		
(Intercept)	0,13	0,0	11,2	1	0,001	0,04	0,0	1,4	1	0,238	rea	
MCI	-0,01	0,1	0,0	1	,916	0,09	0,0	3,2	1	,072	Rural Area	
AD	0,15	0,1	5,4		,020	0,19	0,1	11,6	1	,001	l m	
PD	-0,03	0,1	0,2	1	,691	0,04	0,1	0,4	1	,521		
Controls	0 ^a					0 ^a						
(Scale)	,068 ^b	0,0				,055 [♭]	0,0					
			Hypot	hesi	s Test			Hypot	s Test			
Parameter	В	Std. Error	Wald Chi- Square	df	Sig.	В	Std. Error	Wald Chi- Square	df	Sig.		
(Intercept)	0,07	0,0	2,8		0,095	0,10	0,0	4,7	1	0,030	rea	
MCI	0,16	0,1	6,2	1	,013	0,15	0,1	4,4	1	,037	In A	
AD	0,23	0,1	9,6	1	,002	0,20	0,1	5,3	1	,021	Urban Area	
PD	0,12	0,1	2,0	1	,156	0,19	0,1	4,2	1	,042		
Controls	0 ^a					0 ^a						
(Scale)	,066 ^b	0,0				,076 ^b	0,0					
	a. Set to zer b. Maximum		this paramete e <i>s</i> timate.	r is re	dundant.							

Step 3 - Regression analyses 2/2

Dimosthenis I. Pavlou "Traffic and safety behaviour of drivers with neurological diseases affecting cognitive functions"



» 42 General Linear Models regarding the effect of distraction on mean speed, time headway, lateral position, steering angle variability, reaction time at unexpected incidents, accident probability, and driving errors of patients with MCI, AD and PD and controls.

Paramete Dependent varial Model:	ole: <mark>Re</mark>	actio	on ⁻	Time	(millise	ec)	Paramete Dependent varial Model:	ole: <mark>Re</mark>	actio	on Tin	ne (milli	sec)	Dependent var	iable: F	leact	ion ⁻	the GLI Time (tractor	millise	c)	Parameter Estimates of the GLM Dependent variable: Reaction Time (millise Model: (Intercept), Distractor			ec)		
	MCI	gro	up)				AD o	grou	цр				PD	gro	oup				Control group					
Parameter	В	Std. Error		lypothes d Chi- lare df	is Test Sig.	9	Parameter	В	Std. Error	Hypot Wald Chi Square	thesis Test	9	Parameter	В	Std Erro	Wale	Hypothesis d Chi- uare	Test Sig.	а	Parameter	В	Std. Error	Hypo Wald Ch Square	thesis Test ⁱ⁻ df Sig .	g
(Intercept)	2096	71,3	86	3,6 1	0,000	Area	(Intercept)	2489	126,5	387,5	1 0,000	Are	(Intercept)	221	7 156,	1 20)1,6 1	0,000	Are	(Intercept)	1660	51,4	1042,2	1 0,000	Are
Conversation	-91	100,8	0	,8 1	,365	Rural	Conversation	-33	181,9	0,0	1 ,857	Rural	Conversation	37	225,	0 0),0 1	,869	Rural Area	Conversation	-60	73,7	0,7	1 ,415	Iral
Mobile phone	343	135,5	б	,4 1	,011	т Т	Mobile phone	1246	403,9	9,5	1 ,002	- E	Mobile phone	792	312,	2 6	i,4 1	,011	Ř	Mobile phone	93	87,3	1,1	1 ,287	B
No distraction	0 ª						No distraction	0 ª					No distraction	1 Oª						No distraction	0ª				
(Scale)	411902,492	41930,6					(Scale)	735576,750	107294,9				(Scale)	023341;	347 14848:	2,0				(Scale)	293335,870	25015,8			
Parameter	В	Std. Error	Wal	lypothes ^{d Chi-} df ıare	is Test Sig.	a	Parameter	В	Std. Error	Hypot Wald Chi Square	hesis Test df Sig .	9	Parameter	В	Std Erro	Wale	Hypothesis d Chi- uare	Test Sig.	в	Parameter	В	Std. Error	Hypo Wald Ch Square	thesis Test ⁱ⁻ df Sig .	D D
(Intercept)	1505	48,6	96	0,8 1	0,000	Area	(Intercept)	1782	81,9	473,3	1 0,000	Area	(Intercept)	157	9 87,0) 32	.9,1 1	0,000	Area	(Intercept)	1344	53,0	643,6	1 0,000	Area
Conversation	199	70,2	8	,0 1	,005	Urban /	Conversation	65	135,5	0,2	1 ,629	Urban .	Conversation	487	129,	9 14	4,1 1	,000,	Urban ,	Conversation	76	76,7	1,0	1 ,319	Urban ,
Mobile phone	-56	104,7	0	,3 1	,595	Lt Lt	Mobile phone	164	208,8	0,6	1 ,431	5	Mobile phone	14	204,	1 0),0 1	,946	Ŀ	Mobile phone	115	93,4	1,5	1 ,219	E I
No distraction	0 ª						No distraction	0 ª					No distraction	1 Oª						No distraction	0 ª				
(Scale)	146249,419	17735,3					(Scale)	221345,075					(Scale)		921 38981					(Scale)		22985,2			
	a. Set to ze b. Maximun			rameter is r te.	edundant.			a. Set to zer b. Maximum			er is redundant.				zero beca um likeliho		arameter is rec ate.	lundant.			a. Set to ze b. Maximur			ter is redundant.	

Step 3 - Synthesis of Regression analyses 1/2

	Compensatory behaviour	Cognitive dificit			
	Speed, headway, lateral position, steering angle variability	Reaction time and accident probability			
Controls					
МСІ					
PD					
AD					

- » The disease leads to more pronounced driving impairments in several longitudinal or lateral control measures
- » Patients have a more conservative and cautious driving pattern
- » The compensatory behaviour of the first mechanism is not sufficient to counterbalance the driving deficits due to cognitive impairments

Dimosthenis I. Pavlou "Traffic and safety behaviour of drivers with neurological diseases affecting cognitive functions"

Step 3 - Synthesis of Regression analyses 2/2

MCI, AD) and PD c	drivers co	mpared to their undistracted driving
	Conversation with passenger	Mobile phone use	Comment
Mean speed		↓	Lower speed for MCI group in rural road when using mobile phone
Time headway			Larger headway for MCI group in rural road when using mobile phone
Lateral position			More closely to the left border of the road for the AD group in rural road when using mobile phone
Steering angle variability			No significant impact of distraction in any group
Reaction time			Larger reaction time for all groups in all conditions when using mobile phone and for the MCI and PD groups when conversing with passenger in urban road
Accident probability		1	Higher accident probability for all groups in all conditions when using mobile phone and for the MCI and PD groups when conversing with passenger in urban road

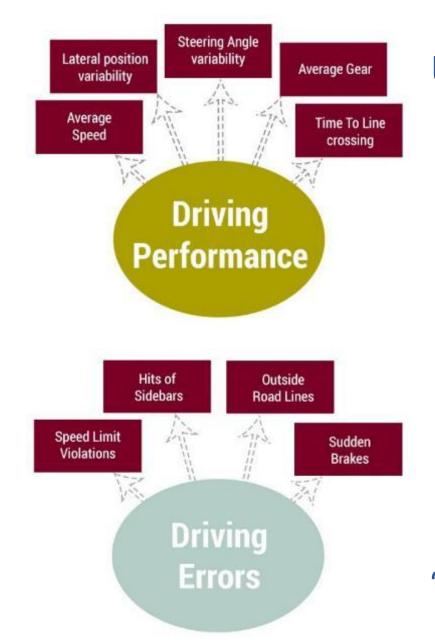
The driving profile of individuals with **>>** neurological diseases affecting cognitive functions changed radically under the more demanding driving condition that included the use of a hand-held mobile phone » In the driving condition with the mobile phone, the drivers with MCI, AD and PD applied again the compensatory strategy of reducing their speed but in this case the outcome was not successful, as indicated by the pronounced increase of their reaction time and accident risk.

Step 4 - Principal Component Analysis

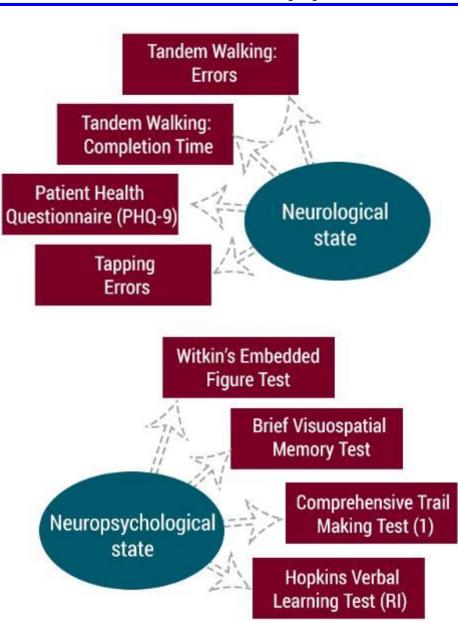
Dimosthenis I. Pavlou *"Traffic and safety behaviour of drivers with neurological diseases affecting cognitive functions"*

The size and interdisciplinary nature of the database lead us to implement 4 Principal Component Analyses (PCA) regarding:

- driving performance variables
- driving errors variables
- neurological variables
- neuropsychological variables


in order to investigate which observed variables are most highly correlated with the common factors and how many common factors are needed to give an adequate description of the data.

		Factor 1		
	StdLateralPosition	,923		
	TTLAverage	,905		
	StdWheelAverage	,900		
	WheelAverage	,845		
	LateralPositionAverage	,835		
	HWayAverage	-,738		
	StdHWayAverage	-,708		
	StdTTLAverage	,666		
	StdTTCAverage	,631		
	TTCAverage	,623		
į.	BrakeAverage	,553	-	
	StdBrakeAverage	,553	Factor 2	
	AverageSpeed		,776	
	TheadAverage		-,697	
	RalphaAverage		,677	
	StdRalphaAverage		,669	
	StdevAverageSpeed		,637	Factor 3
	GearAverage			,75
	StdGearAverage			,75
	StdRpmAverage			,66
	RpmAverage			,573
	a. Rotation converged in $\boldsymbol{\delta}$ iterations.			
	Total Va	riance Expla	ined	
	Rotation Sum	s of Squared	Loadings	
	Component	1	2	-
	Total	8,5	5,7	2,2
	% of Variance	38,5	25,7	10,
	Cumulative %	38,5	64,2	74,


Step 4.5 - Development of Latent variables

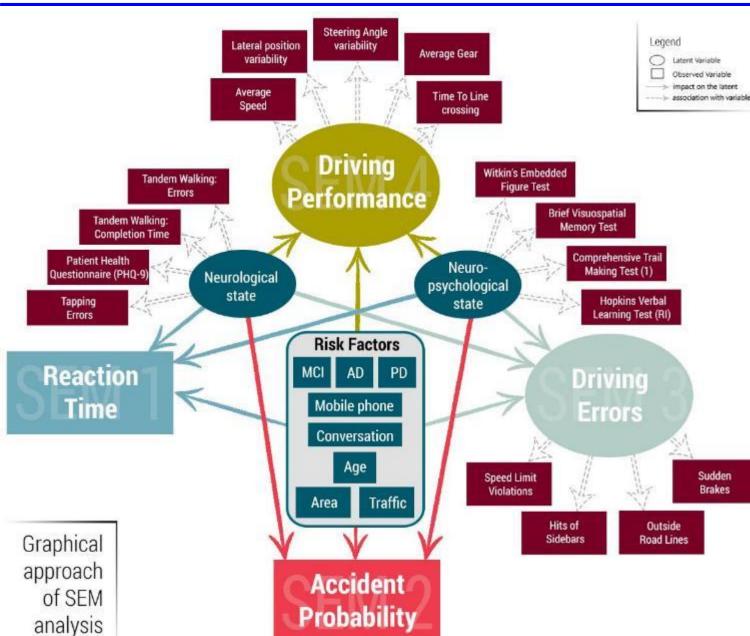
Dimosthenis I. Pavlou "Traffic and safety behaviour of drivers with neurological diseases affecting cognitive functions"

Use of the most highly correlated observed variables of each principal component which describe adequately the data, in order to develop four non-observed, latent variables: "driving performance" "driving errors" "neurological state" "neuropsychological state"

Step 5 - Structural Equation Models (SEMs)

- » In the fifth and final statistical step, the core statistical analysis of the present PhD thesis took place, including the implementation of 4 Structural Equation Models (SEMs) for the first time in the scientific field of driving behaviour of drivers with neurological diseases affecting cognitive functions.
- » Structural Equation Modeling is a very **general, powerful multivariate analysis technique** that includes several analysis methods and involves the evaluation of two models:
 - » Measurement Model
 - » The part of the model that relates indicators to latent factors
 - » The measurement model is the factor analytic part of SEM
 - » Path model
 - » This is the part of the model that relates variable or factors to one another (prediction)
 - » If no factors are in the model then only path model exists

» Goodness-of-fit measures


- » Standardized Root Average Square Residual (SRMR)
- » Root Average Square Error of Approximation (RMSEA)
- » Comparative Fit Index (CFI)
- » Tucker Lewis Index (TLI)

MZ MZ	MZ MZ
M ₂₂ : Futher Report From. 76d.	M ₂₃ : Pather Report Est. Problem Est. Problem
$\gamma \gamma$	$\gamma \gamma$

Step 5 - SEM analysis

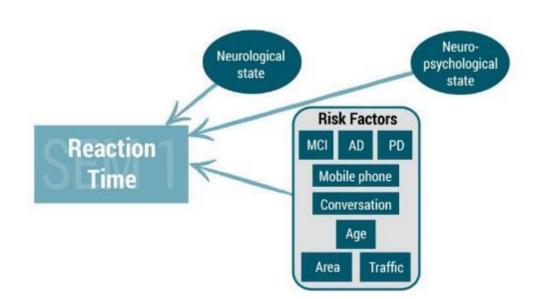
Dimosthenis I. Pavlou "Traffic and safety behaviour of drivers with neurological diseases affecting cognitive functions

4 latent variables: "driving performance", "driving errors", "neurological state" and "neuropsychological state", developed by 17 observed variables

8 key observed variables (risk factors): MCI, AD, PD, urban area, low traffic conditions, advanced age, mobile phone use, and conversation with passenger

4 SEMs: regarding the impact of the 8 key risk factors and of 2 latent variables "neurological state" and "neuropsychological state" on the observed variables "reaction time" and "accident probability" and the latent ones "driving errors" and "driving performance"

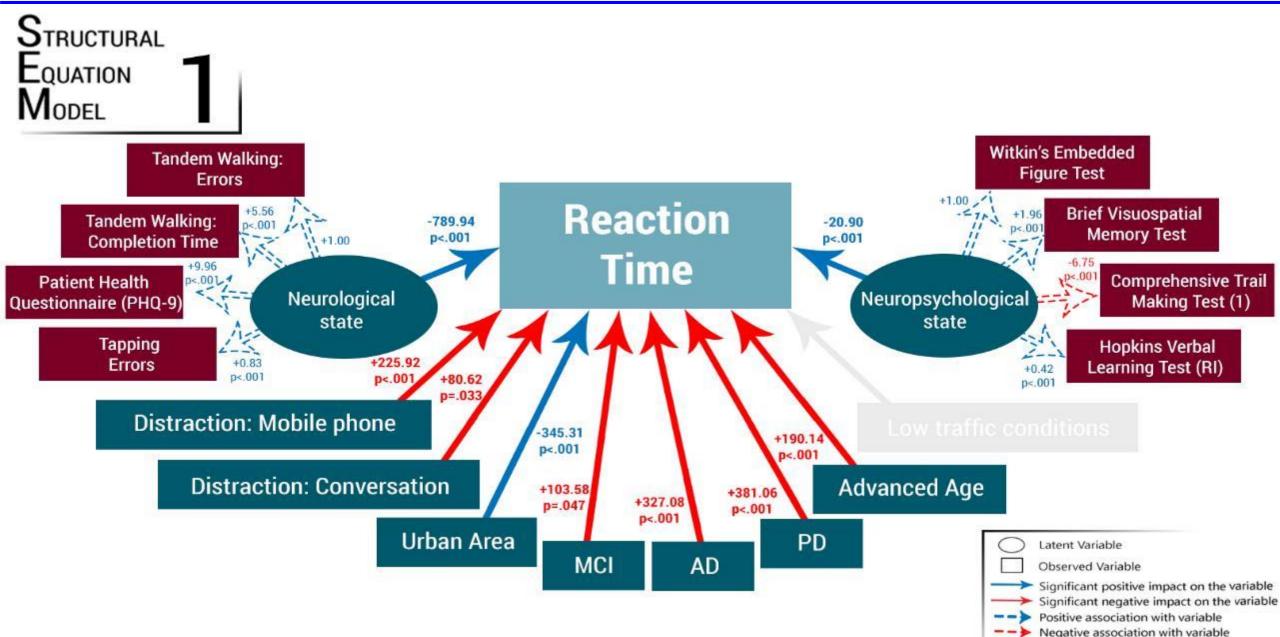
Sudden


Brakes

Dimosthenis I. Pavlou "Traffic and safety behaviour of drivers with neurological diseases

Step 5 - SEM regarding REACTION TIME

- A critical finding that **supports the validity** of the **>>** overall SEM is that the contribution of the observed variables on the construction of the latent variables was in all cases statistically significant
- All predictors (except for low traffic conditions) had >> a **significant contribution** on the prediction of the reaction time
- The obtained goodness-of-fit measures are generally close to the respective limits

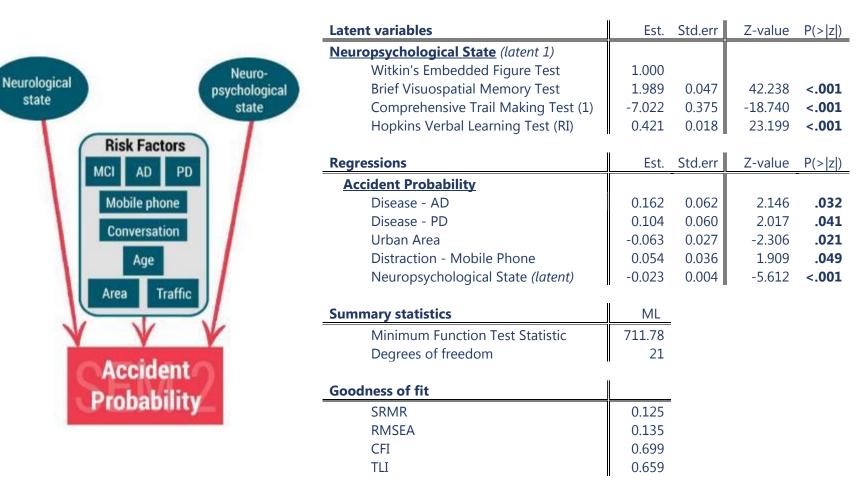


	rivers with ri affecting	0	al diseases functions"	
Latent variables	Est.	Std.err	Z-value	P(> z)
Neuropsychological State (latent 1)				-
Witkin's Embedded Figure Test	1.000			
Brief Visuospatial Memory Test	1.962	0.048	40.927	<.001
Comprehensive Trail Making Test (1)	-6.752	0.405	-16.685	<.001
Hopkins Verbal Learning Test (RI)	0.415	0.020	20.818	<.001
Neurological State (latent 2)				
Tandem Walking: Errors	1.000			
Tandem Walking: Completion Time	5.557	0.873	6.364	<.001
Patient Health Questionnaire (PHQ-9)	9.956	2.416	4.120	<.001
Foot taping errors	0.829	0.170	4.885	<.001
Regressions	Est.	Std.err	Z-value	P(> z)
Reaction Time				-
Disease - MCI	103.575	52.205	1.984	.047
Disease - AD	327.075	87.927	3.492	<.001
Disease - PD	381.056	88.544	4.304	<.001
Urban Area	-345.309	33.260	-10.382	<.001
Advanced Age	190.137	43.877	4.333	<.001
Distraction - Conversation	80.614	37.769	2.134	.033
Distraction - Mobile Phone	225.921	54.088	4.177	<.001
Neuropsychological State (latent)	-20.899	6.464	-3.233	<.001
Neurological State (latent)	-789.943	226.670	-3.485	<.001
Summary statistics	ML			
Minimum Function Test Statistic	1928.87			
Degrees of freedom	81			
Goodness of fit				
SRMR	0.138			
RMSEA	0.132			
CFI	0.722			
TLI	0.702			
	-			

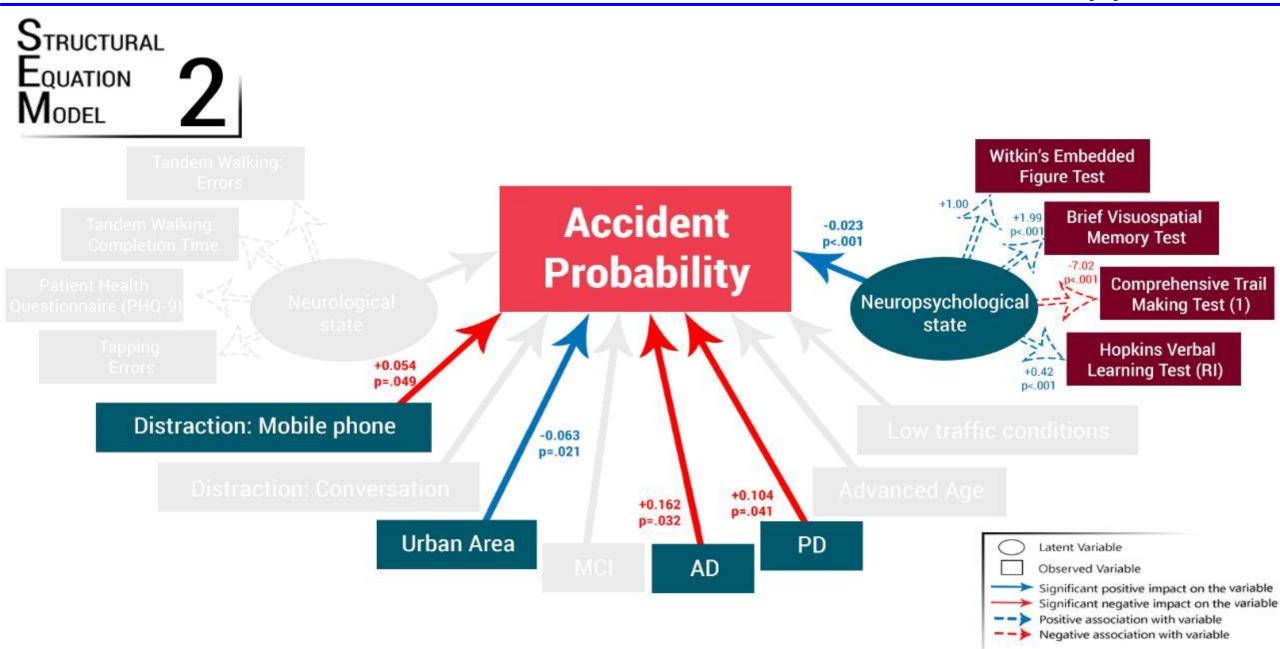
Step 5 - SEM regarding REACTION TIME

Dimosthenis I. Pavlou "Traffic and safety behaviour of drivers with neurological diseases affecting cognitive functions"

A

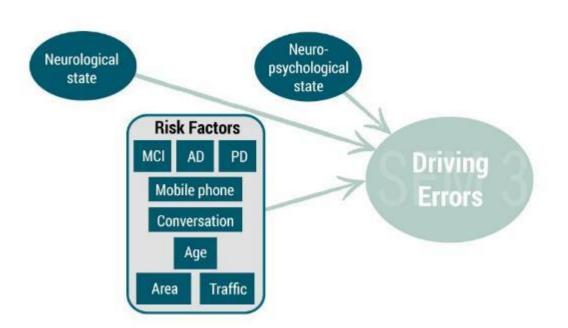

Step 5 - SEM regarding ACCIDENT PROBABILITY "Traffic and safety behaviour drivers with neurological diseases

state


Dimosthenis I. Pavlou affecting cognitive functions'

- The contribution of the >> observed variables on the construction of neuropsychological state was statistically significant
- 5 predictors had a **>>** significant contribution on the prediction of accident probability
- The obtained goodness-of-fit **>>** measures are generally close to the respective limits

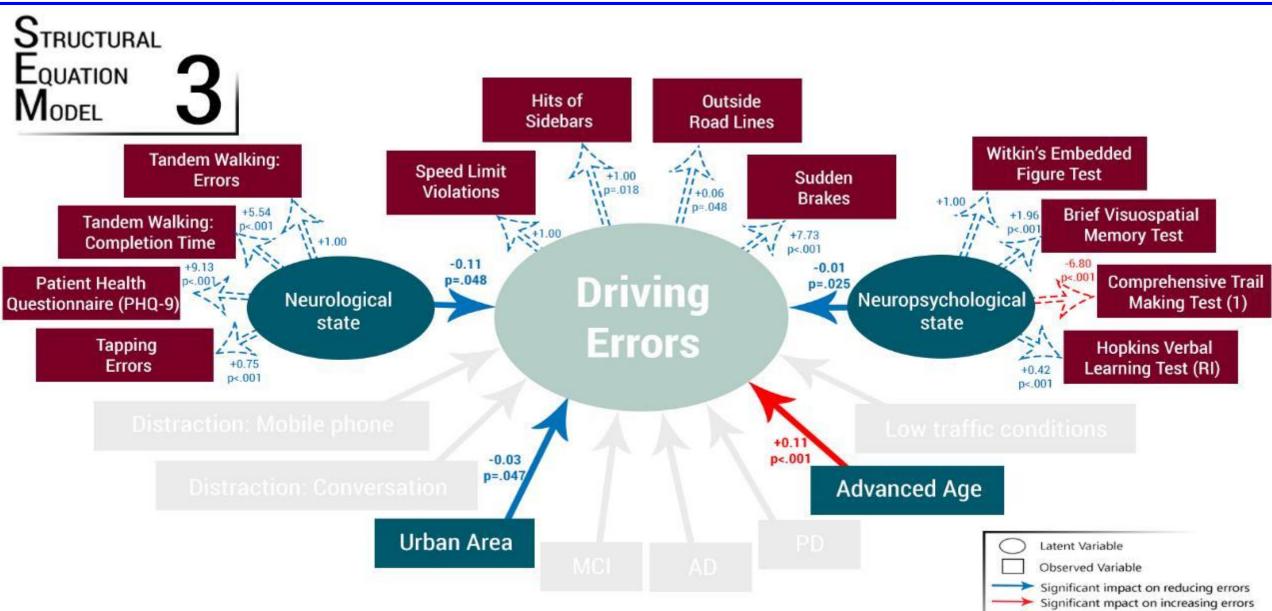
Step 5 - SEM regarding ACCIDENT PROBABILITY "Traffic and safety behaviour "Traffic and safety behaviour" affecting cognitive functions'



Dimosthenis I. Pavlou ())

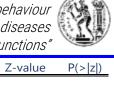
Step 5 - SEM regarding DRIVING ERRORS

- » A critical finding that **supports the validity** of the overall SEM is that the contribution of the observed variables on the construction of the latent variables was in all case statistically significant
- » 4 predictors had a significant contribution on the prediction of the latent variable "driving errors"
- » The obtained goodness-of-fit measures are generally close to the respective limits

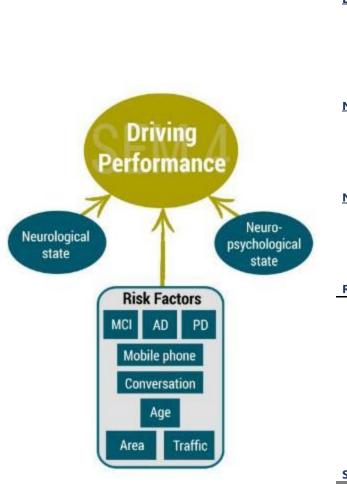

	affecting cognitive functions"						
Latent variables	Est.	Std.err	Z-value	P(> z)			
Driving Errors (latent 1)							
Speed Limit Violations	1.000						
Hits of Sidebars	1.000	0.421	2.374	.018			
Outside Road Lines	0.059	0.034	1.961	.048			
Sudden Brakes	7.731	2.339	3.306	<.001			
Neuropsychological State (latent 2)							
Witkin's Embedded Figure Test	1.000						
Brief Visuospatial Memory Test	1.955	0.046	42.238	<.001			
Comprehensive Trail Making Test (1)	-6.799	0.391	-17.385	<.001			
Hopkins Verbal Learning Test (RI)	0.416	0.019	21.553	<.001			
Neurological State (latent 3)							
Tandem Walking: Errors	1.000						
Tandem Walking: Completion Time	5.537	0.875	6.326	<.001			
Patient Health Questionnaire (PHQ-9)	9.128	2.127	4.292	<.001			
Foot taping errors	0.748	0.144	5.191	<.001			
Regressions	Est.	Std.err	Z-value	P(> z)			
Driving Errors							
Urban Area	-0.027	0.015	-1.960	.047			
Advanced Age	0.106	0.033	3.230	<.001			
Neuropsychological State (latent)	-0,005	0.002	-2.236	.025			
Neurological State (latent)	-0.113	0.064	-1.992	.048			
Summary statistics	ML						
Minimum Function Test Statistic	1445.72						
Degrees of freedom	73						
9							
Goodness of fit							
2	0.118						
Goodness of fit							
Goodness of fit SRMR	0.118 0.125 0.720						

Step 5 - SEM regarding *DRIVING ERRORS*

Dimosthenis I. Pavlou "Traffic and safety behaviour of drivers with neurological diseases affecting cognitive functions"


> Positive association with variable Negative association with variable

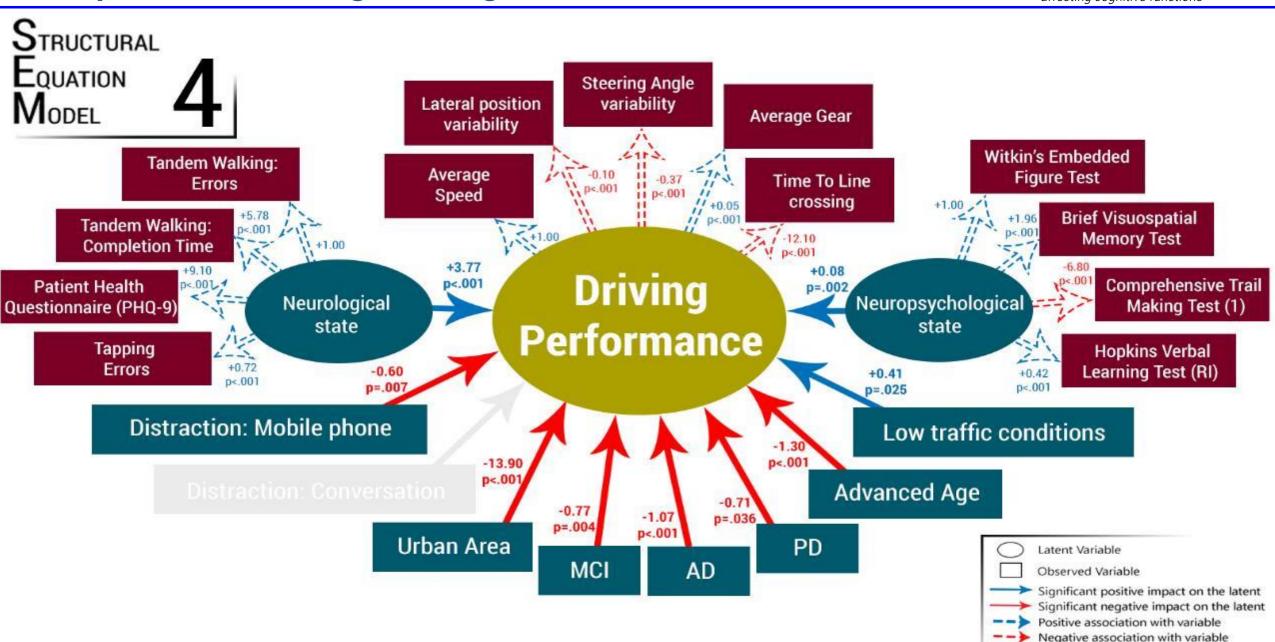
()



Step 5 - SEM regarding DRIVING PERFORMANCe "Traffic and safety behaviour "Traffic and safety behaviour diseases"

Dimosthenis I. Pavlou

- » A critical finding that **supports** the validity of the overall SEM is that the contribution of the observed variables on the construction of the latent variables was in all case statistically significant
- All predictors (except for **>>** conversing with passenger) had a significant contribution on the prediction of the latent variable "driving performance"
- The obtained goodness-of-fit **>>** measures are generally close to the respective limits

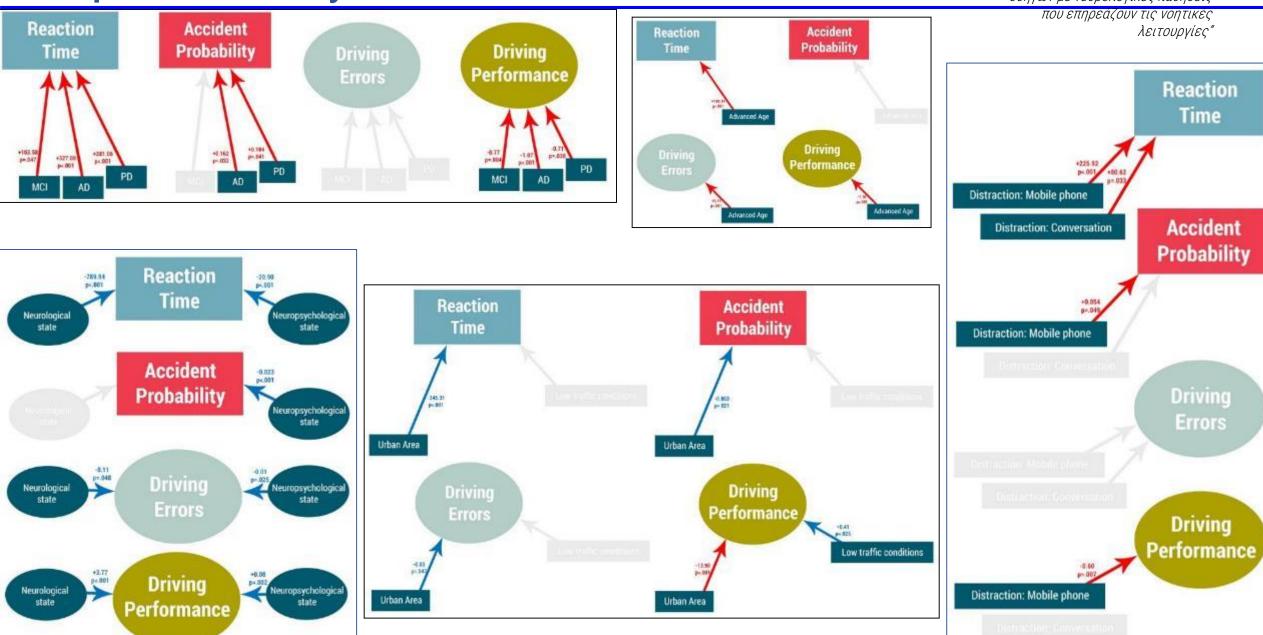


			functions"	
Latent variables	Est.	Std.err	Z-value	P(> z)
Driving Performance (latent 1) Average Speed Lateral Position Variability Steering Angle Variability Time to Line Crossing Average Gear	1.000 -0.098 -0.373 -12.102 0.049	0.003 0.028 0.483 0.002	-29.483 -13.303 -25.039 29.762	<.001 <.001 <.001 <.001
Neuropsychological State (latent 2) Witkin's Embedded Figure Test Brief Visuospatial Memory Test Comprehensive Trail Making Test (1) Hopkins Verbal Learning Test (RI)	1.000 1.962 -6.803 0.416	0.047 0.390 0.019	41.964 -17.430 21.553	<.001 <.001 <.001
<u>Neurological State</u> (latent 3) Tandem Walking: Errors Tandem Walking: Completion Time Patient Health Questionnaire (PHQ-9) Foot taping errors	1.000 5.777 9.101 0.721	0.937 2.077 0.134		<.001 <.001 <.001
Regressions	Est.	Std.err	Z-value	P(> z)
Driving Performance Disease - MCI Disease - AD Disease - PD Urban Area Low Traffic Conditions Advanced Age Distraction - Mobile Phone Neuropsychological State (latent) Neurological State (latent) Neurological State (latent)	-0.772 -1.066 -0.705 -13.902 0.414 -1.296 -0.604 0.082 3.765 ML	0.267 0.329 0.336 0.390 0.185 0.235 0.223 0.026 0.871	-2.889 -3.237 -2.100 -35.638 2.245 -5.521 -2.701 3.174 4.320	.004 <.001 .036 <.001 .025 <.001 .007 .002 <.001
Minimum Function Test Statistic Degrees of freedom	3517.01 146			
Goodness of fit SRMR RMSEA	0.122			
CFI	0.124			

0.700

TLI

Step 5 - SEM regarding DRIVING PERFORMANCe "Traffic and safety behaviour "Traffic and safety behaviour" affecting cognitive functions'



Dimosthenis I. Pavlou XI)

Step 5 - SEM Synthesis

Δημοσθένης Η. Παύλου "Συμπεριφορά κυκλοφορίας και ασφάλειας οδηγών με νευρολογικές παθήσεις

5 PhD Dissertation Innovations

Dimosthenis I. Pavlou "Traffic and safety behaviour of drivers with neurological diseases affecting cognitive functions"

Implementation of a large inter-disciplinary experiment involving medical, psychological and driving assessment

Comparative performance analysis of drivers with different neurological diseases

affecting cognitive

functions

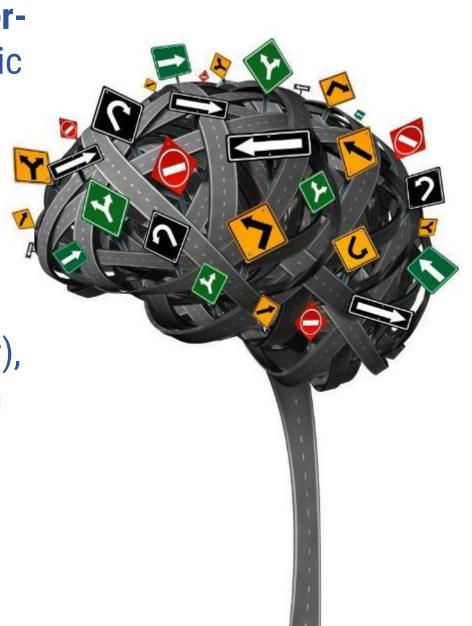
Methodological

Quantification

of the impact of neurological diseases affecting cognitive functions, on drivers' traffic and safety behaviour

> Key research findings

Application of an original integrated inter-disciplinary latent analysis methodology


Identification

of the impact of distraction on the performance of drivers with cerebral diseases

PhD Innovation 1/5

- » The design and implementation of a large scale interdisciplinary experiment which includes two scientific branches, a traffic engineering, and a medical (a neurological and a neuropsychological), is a central component of the present PhD thesis.
- » Given the integration of these different scientific disciplines involved in impaired driving research (traffic engineering, neurology and neuropsychology), this PhD dissertation covers a research field with an obvious - but not previously exploited multidisciplinary nature.
- » 6 GB of data after 1.400 hours of assessments of 225 participants, concludes to a master file

PhD Innovation 2/5

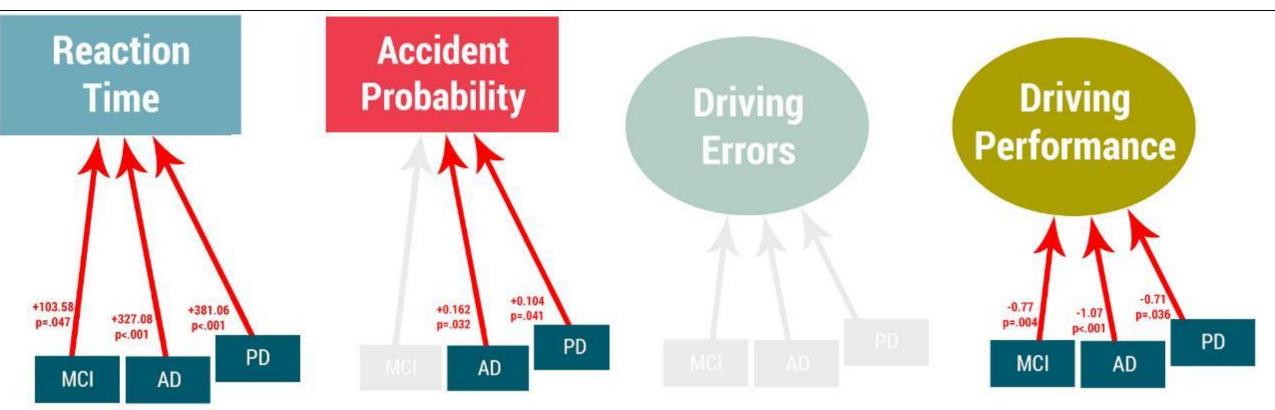
Dimosthenis I. Pavlou "Traffic and safety behaviour of drivers with neurological diseases affecting cognitive functions"

» The second innovation of this PhD dissertation is also methodological, suggesting the implementation of four latent variables covering all three fields of this interdisciplinary PhD thesis: "driving performance" and "driving errors" extracted from the driving simulator experiment, "motor skills" extracted from the neurological database and "cognitive fitness" extracted from the neuropsychological database, in order to construct four Structural Equation Models (SEMs).

» Interdisciplinary interaction between latent variables

Dimosthenis I. Pavlou *"Traffic and safety behaviour of drivers with neurological diseases affecting cognitive functions"*

PhD Innovation 3/5


- » The quantification of the impact of neurological diseases affecting cognitive functions on drivers' traffic and safety behaviour is an innovation which is the core of this PhD dissertation, regarding the key research findings.
- » Patients are aware of their deterioration of their driving skills, they try to compensate their driving behaviour (low speeds, large headways, low variability in the steering angle) but they have significantly worse reaction times and higher accident probability than the healthy drivers.

PhD Innovation 3/5

- » The quantified analysis of the multivariate SEMs about driving behaviour characteristics of the drivers, indicated that:
 - » the presence of MCI, AD and PD has detrimental impact on reaction time, accident probability and driving performance, whereas their impact on driving errors isn't significant.

PhD Innovation 4/5

- » The fourth innovation of this PhD dissertation is derived also from the key research findings and concerns the comparative performance analysis of drivers with different neurological diseases affecting cognitive functions
- » The impact of PD and AD is much more detrimental on reaction time, comparing to the impact of MCI
- » MCI didn't have any significant impact on accident probability, whereas AD increased the accident probability by 16% and PD by 10%.
- » Summarizing, the innovative 4 comparative performance analyses of drivers with different neurological diseases affecting cognitive functions, indicated AD as the riskiest group of drivers (had the greatest impact on accident probability and driving performance and almost the greatest on reaction time), followed by PD, whereas the group of MCI is considered safer compared to the other two examined brain pathologies.

- » The fifth innovation of this PhD dissertation concerns the effect of distraction on the performance of drivers with MCI, AD and PD, by exploring driving while conversing with a co-passenger and driving while conversing through a handheld mobile phone.
- » Exploring and quantifying the impact of distraction on drivers with MCI, AD and PD has not been addressed so far among the international scientific community.
- » It appeared that the distraction conditions didn't have such a significant impact on several driving performance measures in the group of controls, in contrast with the findings extracted from the patients' groups regression analyses in which the impact of distraction and especially the mobile phone use was detrimental.

Future challenges 1/2

Dimosthenis I. Pavlou *"Traffic and safety behaviour of drivers with neurological diseases affecting cognitive functions"*

» Sample schemes should be strengthened in terms of:

- » **size** (more participants with MCI, AD and PD)
- » the type of the neurological diseases affecting cognitive functions (participants with REM Behaviour Disorder, Frontotemporal Dementia etc. are of great interest regarding their driving behaviour and could be inserted in the research)
- » location and origin (MCI, AD and PD drivers in Greece may present differences in driving behaviour with drivers of the same brain pathologies living in other countries)
- » Periodically assess the driving behaviour of patients with cerebral diseases over time, in order to identify to which extent, the progression of the disease deteriorates several driving performance measures
- » More latent variables could be developed and investigated, depending on the experimental database and the specific research questions
- » SEMs can be developed on on-road and naturalistic experiments or field survey studies

Future challenges 2/2

- » It is important to take into consideration that every driver with a neurological disease affecting cognitive functions should be treated individually, through a modern interdisciplinary driving evaluation
- » The results of this PhD thesis can potentially contribute to a significant reduction in road accidents and related casualties, which are especially prevalent in Greece, if the data and the results extracted, will be exploited by the authorities in order to implement appropriate road safety policy directions regarding the vulnerable group of drivers with neurological diseases affecting cognitive functions