Exploring the capacity of neurological and neuropsychological measures to predict driving performance in individuals with MCI

I. N. Beratis¹, A. Economou², D. Pavlou³, N. Andronas², G. Yannis³, S. G. Papageorgiou¹

¹2nd University Department of Neurology, “Attikon” University General Hospital & ²Department of Psychology, University of Athens, ³Department of Transportation Planning & Engineering, National Technical University of Athens

Abstract

Introduction: The driving capacity of individuals with Mild Cognitive Impairment (MCI) is an open issue.

Objective: The present research aimed at exploring the capacity of neurological and neuropsychological measures to predict driving performance in individuals with MCI.

Methods: A CDR (Clinical Dementia Rating) score of 0.5 was required for the diagnosis of MCI. Additional inclusion criteria were the presence of a valid driver’s license and regular car driving.

Results: The sample of the present study was comprised of 16 individuals with MCI and 14 cognitively intact individuals of similar age and educational level. The collection of the data included: (a) a clinical medical and neurological assessment, (b) extensive neuropsychological assessment that included two different sessions taking place in different days (±2 month interval), and (c) a driving simulation experiment.

Conclusions: The findings show that neurological and neuropsychological measures are useful predictors of driving competence of individuals with MCI and could be used for detecting MCI patients at risk for car accidents.

Background

The number of drivers in Europe and North America that are older than 65 is constantly increasing (Yannis et al., 2011).

Older individuals keep their driving license longer and drive longer distances. However, the percentage of older drivers that are at risk due to cognitive or physical impairments remains unknown.

MCI population appears to be at risk for driving difficulties, although their performance on road or on simulator testing is not consistently worse than that of controls (Frittei et al., 2009; Kawano et al., 2012; Wadley et al., 2009).

Measures of mental flexibility, inhibitory control and visual attention appear to be associated with driving performance in patients with MCI, but this issue needs further investigation (Kawano et al., 2012).

Objective

Scope of the present research was to explore in individuals with MCI the capacity of neurological and neuropsychological measures to predict various indexes of driving performance, namely: number of crashes, reaction time, average driving speed, lateral position variation, and average headway time.

Methods

1. A CDR (Clinical Dementia Rating) score of 0.5 was required for the diagnosis of MCI. Additional inclusion criteria were the presence of a valid driver’s license and regular car driving.

2. The sample of the present study was comprised of 16 individuals with MCI and 14 cognitively intact individuals of similar age and educational level. The collection of the data included: (a) a clinical medical and neurological assessment, (b) extensive neuropsychological assessment that included two different sessions taking place in different days (±2 month interval), and (c) a driving simulation experiment.

3. Driving was assessed with a Fowest FP200 driving simulator, in different conditions.

Figure 1. Driving under the rural condition

Results

Table 1. MCI vs Control Group on Driving Indexes

<table>
<thead>
<tr>
<th>Index</th>
<th>MCI</th>
<th>Control Group</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Speed</td>
<td>42.24 ± 7.46</td>
<td>43.62 ± 7.33</td>
<td>.51</td>
</tr>
<tr>
<td>Reaction Time (sec)</td>
<td>1.89 ± 0.46</td>
<td>1.78 ± 0.28</td>
<td>.43</td>
</tr>
<tr>
<td>No. of Crashes</td>
<td>.56 ± 0.1</td>
<td>.43 ± 0.6</td>
<td>.49</td>
</tr>
<tr>
<td>Lateral Position Var.</td>
<td>.27 ± .42</td>
<td>.28 ± .46</td>
<td>.37</td>
</tr>
<tr>
<td>Headway Time</td>
<td>41.11 ± 19.58</td>
<td>38.40 ± 22.41</td>
<td>.36</td>
</tr>
</tbody>
</table>

ReacTion Time

1. MCI group: \(R^2 = 732, F(3,12) = 10.92, p = .001 \)
 Predictors: (1st level) cognitive functioning (MMSE)
 (2nd level) balance and movement coordination (Tandem Walking, \(\beta = .63, p =.007 \))

2. Control group: \(R^2 = 166, F(2,11) = 1.10, p = .368 \)

Variance of Crashes

1. MCI group: \(R^2 = .773, F(3,10) = 11.35, p = .001 \)
 Predictors: (1st level) cognitive functioning (MMSE)
 (2nd level) visual span memory (BVMT_Recognition, \(\beta = .40, p = .056 \)), speed of attention (UF1, \(\beta = .48, p = .027 \))

2. Control group: \(R^2 = .279, F(3,10) = 1.29, p = .330 \)

Headway Average Time

1. MCI group: \(R^2 = .372, F(1,10) = 5.86, p = .048 \)
 Predictors: (1st level) cognitive functioning (MMSE)
 (2nd level) balance and movement coordination (Tandem Walking, \(\beta = .62, p = .020 \))

2. Control group: \(R^2 = .178, F(2,11) = 1.191, p = .340 \)

Summary

The findings show that neurological and neuropsychological measures are useful predictors of driving performance indexes in individuals with MCI.

In the cognitively intact group the same predictors were not contributing to the prediction of driving performance.

Measures assessing balance and movement coordination, visuospatial memory, speed of attention, psychomotor vigilance and information processing speed made the most important contribution on predicting various indexes of driving performance in the MCI group.

The best prediction of certain driving indexes was achieved by a combination of neuropsychological and neurological measures.

Next steps: (a) evaluation of additional driving indexes as well as inclusion of additional driving conditions (e.g., urban streets with multiple lanes, distraction); (b) application of on road driving evaluations.

References/Acknowledgments

This paper is based on two research projects implemented within the framework of the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF), namely the Research Funding Program: THALES; Investing in knowledge society through European Social Fund and the Action: ARISTEIA (Academics Beneficiary: General Secretariat for Research and Technology), co-financed by the European Union (European Social Fund) and Greek national funds.

Note: The paper is written in English.