OBJECTIVES
The objective of this paper is to estimate the accident risk of drivers with cognitive impairments in a driving simulator task. The accident risk of drivers cognitively impaired due to specific pathologies (Mild Cognitive Impairment - MCI, Alzheimer’s Disease - AD and Parkinson’s Disease - PD) is calculated as the rate of the number of accidents to the number of unexpected incidents, both occurring during a driving simulator task in a rural and urban road environments. The accident risk rates of patients are compared to those of healthy drivers of similar age groups.

DRIVING SIMULATOR EXPERIMENT
- Distract and DriverBrain research projects
- Neurologists - Medical/neurological assessment: a full clinical medical, ophthalmological and neurological evaluation, in order to well document the characteristics of each of these disorders.
- Neuropsychologists - Neuropsychological assessment: a series of neuropsychological tests and psychological - behavioural questionnaires to the participants which cover a large spectrum of Cognitive Functions: visuospatial and verbal episodic and working memory, general selective and divided attention, reaction time, processing speed, psychomotor speed etc.
- Transportation Engineers - Driving at the simulator: assessing the driving behaviour of participants by means of programming of a set of driving tasks into a driving simulator for different driving scenarios.

“DRIVING AT THE SIMULATOR” ASSESSMENT
- quarter-cab driving simulator manufactured by the FOERST Company (3 LCD wide screens 42”, full HD: 1920x1080 pixels - total field of view 170 degrees, validated against a real world environment)
- At first, one practice drive (usually 10-15 minutes)
- Afterwards, the participant drives two sessions (approximately 15 minutes each)
- Each session corresponds to a different road environment:
 - a rural route, single carriageway, zero gradient, mild horizontal curves
 - an urban route, at its bigger part dual carriageway, separated by guardrails. Two traffic controlled junctions, one stop-controlled junction and one roundabout are placed along the route.
- During each trial, 2 unexpected incidents are scheduled to occur:
 - a rural route, single carriageway, zero gradient, mild horizontal curves
 - an urban route, at its bigger part dual carriageway, separated by guardrails. Two traffic controlled junctions, one stop-controlled junction and one roundabout are placed along the route.
 - sudden appearance of an animal (deer or donkey) on the roadway
 - sudden appearance of a child chasing a ball on the roadway or of a car suddenly getting out of a parking position.

SAMPLE SCHEME
140 participants (all more than 55 years of age and of similar demographic characteristics): 31 Healthy Controls (aver. 64.5 y.o., 20 males), 109 Patients (aver. 69.0 y.o., 80 males): 25 AD patients (aver. 75.4 y.o.), 59 MCI patients (aver. 70.1 y.o.), 25 PD patients (aver. 66.1 y.o.)

RESULTS 1/2
- Descriptive statistics indicate that all drivers with cerebral diseases have higher accident risk than the control group in both driving areas.
- AD group has 5 times higher accident risk than the control one.
- PD group has more than double accident risk in urban area than in rural area.
- MCI group has more than double accident risk in both driving environments than the control one.

RESULTS 2/2
GLM in rural area indicates statistically significant differences between the control drivers and the AD and the PD drivers, whereas in urban area the accident risk is significantly higher in all groups of patients, compared with the control one.

CONCLUSIONS
- Accident risk is slightly increased in urban driving environment than rural one, in all examined groups.
- AD drivers have the higher accident risk compared with all other examined groups.
- AD drivers crashed more than 1 out of 4 incidents.
- PD drivers in urban area have more than 100% higher accident risk than rural area.
- Overall, patients have significantly higher accident risk than the control ones.
- Even they drive slower (Pavlovi et al., 2015), they are more likely to crash the incident that unexpectedly happens in front of them.

ACKNOWLEDGEMENT
This paper is based on two research projects implemented within the framework of the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF), namely the Research Funding Program: THALES, Investing in knowledge society through the European Social Fund, and the Action: ARISTEA (Action’s Beneficiary General Secretariat for Research and Technology), co-financed by the European Union (European Social Fund) and Greek national funds.