

The driving simulator as a valid measure of driving behavior

George Yannis Professor NTUA **Dr Panagiotis Papantoniou** Civil - Transportation Engineer NTUA Research associate Dr Dimosthenis Pavlou Civil - Transportation Engineer NTUA Research associate

Corfu, 7th October 2016

Driving Behaviour and Road Safety

- » Driving in traffic is more than just knowing how to operate the mechanisms which control the vehicle
- » Road accidents constitute a major social problem in modern societies (eighth leading cause of fatalities globally and the leading cause of fatalities for young people aged 15-29 years), in 2015:
 - » 1.2 million fatalities worldwide
 - » 26.000 in the European Union
 - » 800 in Greece

Human factors and driving behaviour

- » Human factors are the basic causes in 65-95% of road accidents
- » Human factors involve a large number of specific factors that may be considered as accident causes, including:
 - » Driver dangerous action (speeding, traffic violations etc.)
 - » Driver error or reaction (loss of control, failure to keep safe distances, sudden braking etc.)
 - » Behaviour or inexperience (aggressive driving, nervousness, uncertainty etc.)
 - » Driver distraction (mobile phone use, conversation with passenger etc.)
 - » Driver impairment (cerebral diseases, alcohol, fatigue etc.)

Types of assessing driving behavior

- Driving Simulator Experiments
- Naturalistic Driving Experiments
- On road experiments
- Surveys on Opinion and Stated Behaviour

Naturalistic driving experiments

A research method for the observation of everyday driving behaviour of road users

Advantages

- Large degree of control over the variables that affect driving behavior
- Researchers study issues that cannot be investigated in a lab

- Difficult to determine the exact cause of a behaviour
- The experimenter cannot control outside factors
- Traffic incidents are very rare

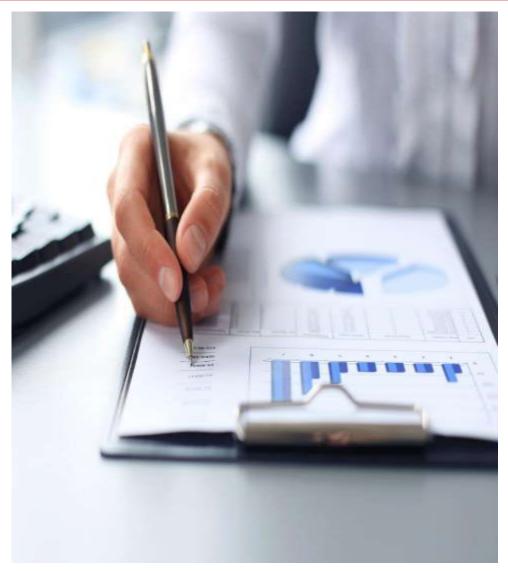
On-road experiments

Studies using instrumented test vehicles to gain greater insights into the factors that contribute to road user accident risk

Advantages

• Study of actual observed behaviour

- Data collection for a short period
- In response to selected interventions
- High cost


Surveys on opinion and stated behaviour

A reference questionnaire is built, based on a list of selected topics and a representative sample of population is interviewed

Advantages

- Survey design may control for external factors
- Allow to investigate new situations, outside the current set of experiences

- Often hypothetical nature of questions
- Actual behaviour is not observed
- Over- or under-representation of actual behaviour

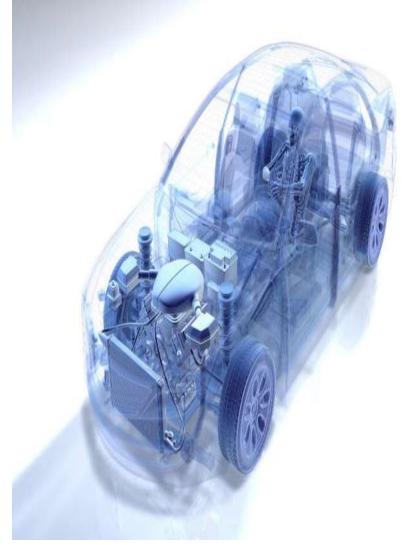
Driving simulator experiments

Examination of a range of driving performance measures in a controlled, relatively realistic and safe driving environment

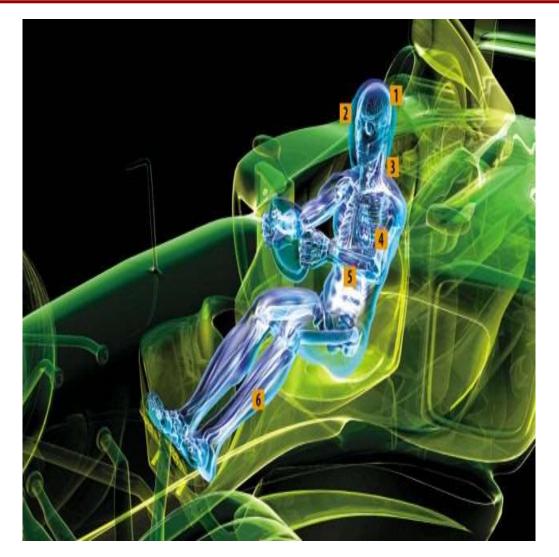
Advantages

- Collection of data which would be very difficult to collect under real traffic conditions
- Exploration of any possible driving scenario
- Driving conditions are identical for all drivers

- Possibility of adopting a different driving behaviour
- Simulator sickness



Driving simulator challenges - Fidelity



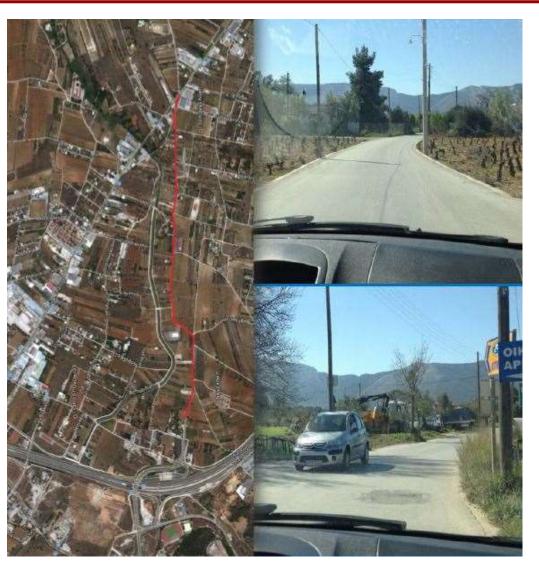
- Fidelity refers to the level of realism inherent in the virtual world
- The closer a simulator approximates real-world driving the greater fidelity it is reported to have
- The following **dimensions** of fidelity exist
 - equipment fidelity
 - environmental fidelity
 - objective fidelity
 - perceptual / psychological fidelity

Driving simulator challenges - Validity

- Driving simulator validity refers to the degree to which behaviour in a simulator corresponds to behaviour in real-world environments under the same conditions
- If the numerical values are identical or near identical, **absolute validity** is achieved
- Relative validity is achieved when driving tasks have a similar affect on driving performance in both the simulator and real vehicles

Validity experiment - Overview

Two driving scenarios have been developed in order to compare the driving performance of young drivers in simulated and on-road driving conditions


- In the **driving simulator** experiment, a rural route 2,1 km long, single carriageway and the lane width is 3m, with zero gradient and mild horizontal curves
- In the **on-road experiment** the selected route was consisted of a rural route 1,9km long, single carriageway and lane of 3,5m width

Validity experiment – Road environment

- The on-road experiment took place on the suburbs of Athens, namely in the region of **Paiania**
- Each driver performed with his/her **own car** twice every route, without any distraction source and while conversing with the passenger
- Drivers were asked to follow their usual driving behaviour throughout the experiment and try not to be affected by any other factors

Validity experiment - Analysis methods

Explanatory analysis

Absolute and relative values of driving performance measures were compared in order to give an overall impact of driving performance between simulated and real driving conditions

Model development

Lognormal regression models were developed for the identification of the impact of driving environment, driver characteristics as well as driving performance variables on average vehicle speed

 Average speed (km/h) Logarithm of the average speed Driving on real road conditions (0:no, 1:yes (simulator (0:no, 1:yes) Distance covered at each trial (km) V(NO TALK) – V(TALK) speed difference between talking a 	
 3 Driving on real road conditions (0:no, 1:yes (simulator 4 (0:no, 1:yes) 5 Distance covered at each trial (km) 	
5 Distance covered at each trial (km)	nd not
	nd not
6 V(NO TALK) – V(TALK) speed difference between talking a	nd not
talking scenario of each driver per driving environment (km)	διαφορά
ταχύτητας χωρίς ομιλία με την ταχύτητα με ομιλία κάθε οδι	ηγού για
κάθε περιβαλλον	
7 Ratio of speed when not talking to speed when talking ((km)
8 General acceleration -positive or negative-(m/s^2)	
9 Acceleration (m/s^2)-positive	
10 Logarithm of the acceleration	
11 Deceleration (m/s^2)-negative	
12 Logarithm of the deceleration	
13 Standard deviation of speed	
14 Standard deviation of General acceleration	
15 Standard deviation of Acceleration	
16 Standard deviation of Deceleration	
17 Driving Environment	
18 Age	
19 Gender	
20 Week days driving to work	
21 Cautious driving while talking to passenger	
22 Conversation is risky	
23 Speed Reduction by 10-20Km/h	

Validity experiment - Results

Several parameters have a statistical significant effect on average speed model including

- driver characteristics (age, gender)
- driving performance variables (speed difference with and without conversation)
- questionnaire variables
- Absolute values of drivers' performance vary among simulated and real driving conditions
- Relative differences of driver behaviour at the two driving environments remain mostly the same

	Average Driving Speed									
Independent Variables	β _i	t	Relative I	mpact						
			e _i	e _i *						
Driving Environment	0,069	9,797	0,0196	-3,76						
Speed Difference with and without Conversation	-0,003	-2,389	-0,0052	1						
Standard Deviation of Deceleration	0,019	5,194	0,0248	-4,75						
Age	-0,021	-3,168	-0,0054	1,03						
Gender	-0,040	-6,154	-0,0095	1,83						
Week days driving to work	-0,004	-2,654	-0,0064	1,22						
Cautious driving while talking to passenger	0,049	6,278	0,0063	-1,21						
Conversation is risky	-0,024	-3,325	-0,0057	1,10						
Speed Reduction by 10-20Km/h	-0,036	-4,737	-0,0059	1,14						
R ² =0,659										

Driving performance measures (1/3)

- Driving behavior is a multidimensional phenomenon which means that no single driving performance measure can capture all effects of behavior
- The selection of the specific measures should be guided by a number of general rules related to the nature of the task examined as well as the specific research questions

		Distraction Source					Sample Characteristics							Driving performance measures						Stati	stical	Analy						
	Authors	vear	cell phone	conversation	visual	music	MS	advertisign signs	sat, drink, alcohol	sample size	% male	24	26-55	+99	benefits	questionnaire	speed	lane position	reaction time	perception / stuation awareness	headway	accident probability	eye glance	acceleration / deceleration	Descriptive statistics	One way ANOVA	Two way AMOVA	Repeated measures ANOVA
1	Laberge et al	2004			-	-	-			80	50%		1.5.9	14.2										- 10			-	-
	Drews et al	2008						_		96	25%						•							-				
	Charlton	2009								112	50%																•	
-4	Yannis et.al	2011							•	42	48%			-								•						
5	Hunton andRose	2005	٠							111	25%		-		•				1.1.1			•					-	
6	Horbery et al	2006				٠				31			٠													1000	•	
7	Reed-Jones et	2008				٠				32	44%	٠					•	-	-			•	-			•		
B	Yannis et.al	2011	•			•				48	50%	٠				٠			•			٠				•		
- 9	Rakauskas et al.	2004					1			24	50%					٠	-	•				٠						
10	Kass et al	2007								49	4996	٠	•	٠														
11	Bruyas et al	2009	•							30	50%									1.00								
12	Reimer et al	2010								60	60%				•		•			•				•				
13	Schiehofer et al	2010								69	36%		-		•	•												
14	Ma and Kaber	2005								18	50%				1.11		•	•			•							
15	Beeder and Kas	2006								36	-		•						٠									
18	McKnight and Mc	1993								150	50%			٠				1										
17	White et al	2010		٠						40	50%	٠	-			٠						•						٠
18	Maclej et al	2011								33	5296		-								-							
19	Noy et al	2004								24	6396															•		
20	Donmez et al	2006								28					•			1.00										
21	Donmez et al	2008			•					48	52%	٠	1			•		•				•	•					٠
22	Liang et al	2010			•	-				16	50%				•	1		•		•	1							
23	Fofanova et al	2011				1				20	80%			٠				1.1.1.1		1.000	-							
24	Muhrer et al	2011				1				28	50%	٠						1.1	1	12 2								
25	Metz et al	2011								40	55%																	
26	Kaber et al	2012						1		20	50%									1								
27	Zhang et al	2012								24	50%												•					
28	Hatfield et al	2008								27	48%																	
29	Chisholm et al	2008	-		1.1		1			19	5396		1		•	1	1					1.5	•					
30	Garay-Vega et al	2010				•				17	7196			1.1	•			1					•	-	-		-	٠
	Young et al	2012								37	46%			-			•	•								•		
32	Hughes et al	2012								21	5%					٠												
33	Jamson et al	2005	3				•			48		1							1									
34	Donmez et al	2007	-							29	48%	٠			•		•											
35	Reyes et al	2008			1					12	50%	1.1						1.1						•				
	Jamson et al	2010								18	50%	-			•		•	٠										
	Benedetto et al	2011								15	80%	-			1.1.1	٠	1	12.5										
38	Birrell et al	2011					•			25	56%		•				•	1		1.0	•			•				
	Terry et al	2008						٠		78	55%	٠	٠	٠		•			٠		٠							
40	Young et al	2009					1	•		48	60%							٠					•					
41	Bendak et al	2010								12	100%	٠				٠		1					٠		•			
42	Edquist et al	2011		1.1				٠		48	63%	٠	•	٠	•	٠		٠		1.1			•					
43	Rakauskas et al	2008							•	45	100%								-				-					
44	Young et al	2008							•	26	62%		•		•												•	
	Harrison et al	2011								40	50%							1.1.5.5										

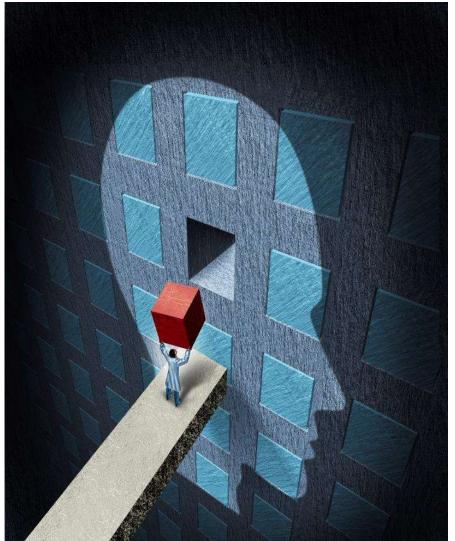
Driving performance measures (2/3)

- Longitudinal Control Measures
 - Average Speed
 - Speed variability
 - Space headway
 - Time headway
- Lateral Control Measures
 - Lateral position
 - Lateral Position variability
 - Steering wheel control
 - Standard deviation of steering wheel angle
 - Steering wheel reversal rate
 - Lane exceedances (LANEX)
 - Time to Lane Crossing (TLC)
 - Reversal Rate (RR)

Driving performance measures (2/3)

- Reaction Time Measures
 - Reaction time
 - Brake Response Time (BRT)
 - Time to Collision (TTC)
- Gap acceptance measures
 - Number of collisions
 - Gaps accepted
- Eye movement measures
 - Glance
 - Eyes-off-road-time
 - Fixation
 - Percent Dwell Time (PDT)

Driving performance measures (3/32)


• Subjective Workload

- NASA-task Load Index (TLX)
- Rating Scale Mental Effort (RSME)
- Situation Awareness Global Assessment
- Driving Activity Load Index (DALI)
- Physiological Workload
 - Heart Rate (HR)
 - Respiration
 - Electroencephalography (EEG)
 - Skin Conductance
- Accident
 - Accident probability
- Others
 - Entropy

Driving simulator overview

- Every experiment type has benefits and limitations. All types of experiments should carefully follow some basic experimental design principles, allowing for reliable analysis of the data
- Driving simulator experiments allow the investigation of any possible driving scenario under identical conditions for all drivers
- Driving simulators provide a variety of driving performance measures

Driving simulator experiment

A common simulator experiment in the framework of two research projects:

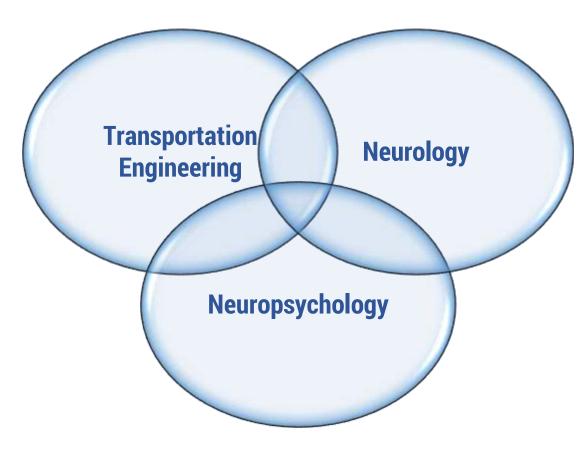
- Distract Analysis of causes and impacts of driver distraction
- DriverBrain Analysis of the performance of drivers with cerebral diseases

An interdisciplinary research team:

- Dpt. of Transportation Planning and Engineering NTUA
- Dpt. of Neurology of the University of Athens Medical School, UoA
- Dpt. of Psychology, School of Philosophy, Pedagogy and Psychology, UoA

Sample size: 225 participants fully examined

- 154 persons > 55 years old
- (MCI = 59, AD= 25, PD= 25, Normal Controls= 45)


Department of Neurology, Psychiatry and Social Medicine, UoA Department of Psychology, UoA

Inter-disciplinary driving simulator experiment

- Medical/neurological assessment: administration of a full clinical medical, ophthalmological and neurological evaluation, in order to well document the characteristics of each of these disorders
- Neuropsychological assessment: administration of a series of neuropsychological tests and psychological - behavioural questionnaires to the participants which cover a large spectrum of Cognitive Functions: visuospatial and verbal episodic and working memory, general selective and divided attention, reaction time, processing speed, psychomotor speed etc.
- Driving at the simulator:

a set of driving tasks into a driving simulator for different driving scenarios

Inclusion criteria and ethical issues

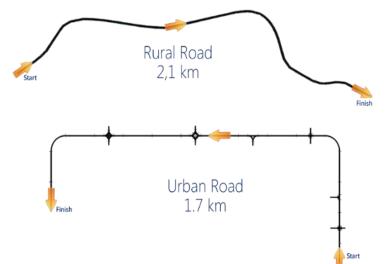
SAN SCIENCE

All participants should:

- » have a valid driving license
- » have driving experience of more than 3 years
- » have driven more than 2500km during the last year
- » have driven at least 10km/week during the last year
- » not have important psychiatric history for psychosis
- » not have any important kinetic disorder that prevent them from basic driving moves
- » not have dizziness or nausea
- » not be pregnant
- » not be an alcoholic or had any other drug addiction
- » not have any important eye disorder that prevent him from driving safely
- » not have any disease of the Central Nervous System

» The study was approved by the Ethics Committee of the University General Hospital "ATTIKON".

Driving simulator


 » Quarter-cab driving simulator manufactured by the FOERST Company

3 LCD wide screens 42"
(full HD: 1920x1080pixels)
total field of view 170
degrees

» Validated against a real road environment

Driving assessment

- 1 practice drive (usually 15-20 minutes)
- 1 rural route (2,1km long, single carriageway, 3m lane width)
- 1 urban route (1,7km long, at its bigger part dual carriageway, 3.5m lane width)
- 2 traffic scenarios for each route:
 - Q_L: Moderate traffic conditions (Q=300 vehicles/hour)
 - Q_H: High traffic conditions (Q=600 vehicles/hour)
- 3 distraction conditions for each route:
 - Undistracted driving
 - Driving while conversing with a passenger
 - Driving while conversing on a hand-held mobile phone
- 2 unexpected incidents scheduled to occur during the trial:
 - Sudden appearance of an **animal** (deer or donkey) on the roadway
 - Sudden appearance of a **child chasing a ball** on the roadway or of a **car suddenly getting out** of a parking position.

Scenarios design

- Sequence of trials Randomized
 - The purpose of randomization is to remove bias and other sources of extraneous variation, which are not controllable

- Full factorial within-subject design
 - 12 trials in total
 - 40 minutes of driving

	Road Traffic Conditions						
	Urban	Area	Rural	Area			
Distraction Sources	Low traffic	High traffic	Low traffic	High traffic			
No distraction condition	*	*	*	*			
Conversation with passenger	*	*	*	*			
Conversation through mobile phone	*	*	*	*			

The driving simulator as a valid measure of driving behavior

George Yannis Professor NTUA **Dr Panagiotis Papantoniou** Civil - Transportation Engineer NTUA Research associate Dr Dimosthenis Pavlou Civil - Transportation Engineer NTUA Research associate

Corfu, 7th October 2016