

# Roadside and Median Deficiencies

within the *SafetyCube* Road Safety Decision Support System

Eleonora Papadimitriou, Athanasios Theofilatos & George Yannis National Technical University of Athens, Greece



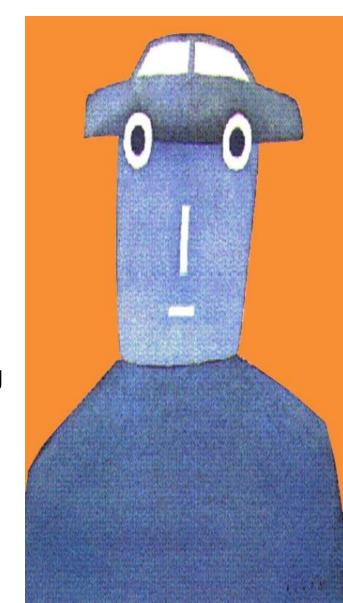
AFB20(2) ROADSIDE DESIGN SAFETY
International Research Activities Subcommittee

## SafetyCube project

Funded by the European Commission under the Horizon 2020 research framework programme

Coordinator: Pete Thomas, Loughborough University

Start: May 2015


Finish: April 2018

17 partners from 12 EU countries



## SafetyCube concept and vision

- Problem
  - Evidence based road safety policies are becoming more usual and there is much better availability of national data and state of the art knowledge
  - Effective road safety policies need good information about accident risk factors and about measures
- SafetyCube will meet this need by generating new knowledge about accident risk factors and the effectiveness of measures relevant to Europe, to be integrated in a European Road Safety Decision Support System (DSS)



## SafetyCube objectives

- The in-depth understanding of accident causation and risk factors.
- Exploit a large amount of existing accident data (macroscopic and in-depth) and knowledge (existing studies) in order:
  - to identify risk factors,
  - to analyse the effects of risk factors on road safety outcomes.
  - To summarise the effects of risk factors and rank them on the basis of their effects.

## SafetyCube methodology

- Methodologies and guidelines developed in SafetyCube.
  - 1. Creating **taxonomies** of risk factors
  - Exhaustive literature review and rigorous study selection criteria
  - Use of a template for coding studies, to be introduced in the DSS back-end database
  - 4. Studies analysed for carrying out meta-analyses to estimate the effects of risk factors / measures.
  - Drafting Synopses summarising results of risk factors / measures.
- Systems approach: links between infrastructure, user and vehicle risks
- Hot topics & additional risk factors and measures
- Assessment of the quality of the data / study methods

## SafetyCube: Infrastructure topics

Nearly 60 risk factors and 90 measures in more than 15 infrastructure areas - motorways, rural and urban roads - road segments and junctions -



# Roadside issues within the SafetyCube 'hot topics'

- Self-explaining and forgiving roads: Removing obstacles, Introduce shoulder, Alignment (horizontal / vertical), Sight distance, Traffic signs, Raised crossings / intersections
- 2. Urban road safety measures: Pedestrians / cyclists, Upgrade of Crossings, New crossings, Junctions / roundabouts treatments for VRU, Visibility
- 3. Road safety management: Quality of measures implementation, Appropriate speed limits, Enforcement, Availability of cost-effectiveness data, Workzones
- 4. **ITS applications**: ISA, Dynamic speed warning, ADAS and active safety with V2I, VMS



**Traffic flow** Traffic volume Risks taxonomy congestion secondary accidents traffic composition (share of pedestrians, cyclists, PTW, HGV) distribution of flow over arms at junctions

**Road surface** deficiencies (risk of ranoff road)

Road type Road type inadequate friction uneven surface ice, snow oil, leaves, etc.

**Poor visibility and** lighting

poor visibility - darkness poor visibility - fog

Adverse weather rain

snow / ice / low temperatures wind

Workzones small workzone length high workzone duration insufficient signage

Horizontal/vertical alignment deficiencies

low curve radius absence of transition curves frequent curves densely spaced junctions poor sight distance - horizontal curves high grade vertical curve radius tunnel poor sight distance - vertical curves



Median / barrier deficiencies undivided road (risk of crash with oncoming narrow median traffic)

collision with train)

Superelevation / cross-slopes superelevetion at curve (risk of ran-off road) cross-slope Lanes / ramps deficiencies number of lanes

Shoulder and roadside absence of shoulder

narrow lane

Risks taxonomy

deficiencies (risk of ran-off narrow shoulder road or crash with obstacle) absence of guardrails or crash cushions absence of clear-zone roadside obstacles (per type of obstacle e.g. trees) sight obstructions

**Poor road readability** absence of traffic signs misleading or unreadable traffic signs absence of road markings absence of rumble strips **Interchange deficiencies** inadequate ramp capacity insufficient ramp length

absence of channelisation absence of access control poor sight distance At-grade junctions high number of conflict points deficiencies type of junction skewness / junction angle poor sight distance gradient

Rail-road crossings (risk of uncontrolled rail-road crossing Poor junction readability uncontrolled junction misleading or unreadable traffic sign absonce of road markings

insufficient acceleration / deceleration lane length

### Overview of results

Ranking of infrastructure risk factors

| Red (Risky)                             | Yellow (Probably risky)                                  | Grey (Unclear)                             |  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------|--------------------------------------------|--|--|--|--|--|
| <ul><li>Traffic Volume</li></ul>        | Occurrence of Secondary crashes                          | <ul><li>Congestion as a risk</li></ul>     |  |  |  |  |  |
| <ul><li>Risks associated with</li></ul> | Absence of Transition curves                             | factor                                     |  |  |  |  |  |
|                                         |                                                          |                                            |  |  |  |  |  |
| Traffic Composition                     | Risk of Different Road Types                             | - Nisks associated with the                |  |  |  |  |  |
| <ul><li>Road Surface -</li></ul>        | Adverse weather - Rain                                   | distribution of traffic flow               |  |  |  |  |  |
| Inadequate Friction                     | Poor Visibility - Darkness                               | over arms at junctions                     |  |  |  |  |  |
| <ul><li>Workzone length</li></ul>       | Cross-section deficiencies - Superelevation              | Adverse weather - Frost                    |  |  |  |  |  |
| <ul><li>Low Curve Radius</li></ul>      | High grade                                               | and snow                                   |  |  |  |  |  |
| <ul><li>Number of Lanes</li></ul>       | Presence of Tunnels                                      | <ul><li>Workzone duration</li></ul>        |  |  |  |  |  |
| Absence of paved                        | Narrow lanes                                             | Frequent curves                            |  |  |  |  |  |
| shoulders                               | Undivided road                                           | <ul><li>Densely spaced junctions</li></ul> |  |  |  |  |  |
| Narrow Shoulders                        | Narrow median                                            | Interchanges -                             |  |  |  |  |  |
|                                         | Risks associated with Safety Barriers and Obstacles      | Acceleration /                             |  |  |  |  |  |
|                                         | Sight Obstructions (Landscape, Obstacles and Vegetation) | deceleration lane length                   |  |  |  |  |  |
|                                         | Interchange deficiencies - Ramp Length                   | 3                                          |  |  |  |  |  |
|                                         | At-grade junctions - Number of conflict points           |                                            |  |  |  |  |  |
|                                         | Risk of different junction types                         |                                            |  |  |  |  |  |
|                                         | At-grade junctions - Skewness / Junction angle           |                                            |  |  |  |  |  |
|                                         | At-grade junctions - Poor sight distance                 |                                            |  |  |  |  |  |
|                                         |                                                          |                                            |  |  |  |  |  |
|                                         | At-grade junctions - Gradient                            |                                            |  |  |  |  |  |
|                                         | Uncontrolled rail-road crossing                          |                                            |  |  |  |  |  |
|                                         | Absence of road markings and crosswalks                  |                                            |  |  |  |  |  |
|                                         | <ul> <li>Uncontrolled junction</li> </ul>                |                                            |  |  |  |  |  |

### Results for medians and roadsides

#### Detailed ranking of risk factors

| Infrastructure<br>Element        | Specific Risk Factor                                                                                | Colour code | Crash risk | Crash<br>frequency | Crash<br>severity | Hot topic<br>(Yes/No) |
|----------------------------------|-----------------------------------------------------------------------------------------------------|-------------|------------|--------------------|-------------------|-----------------------|
| Cross-Section -<br>Road Segments | Shoulder and roadside deficiencies - <b>Absence of paved shoulders</b>                              | Red         | -          | 1                  | -                 | Υ                     |
|                                  | Shoulder and roadside deficiencies -Narrow shoulders                                                | Red         | -          | 1                  | -                 | Y                     |
|                                  | Undivided Road                                                                                      | Yellow      | -          | -                  | <b>↑</b>          | N                     |
|                                  | Cross-section deficiencies - Narrow Median                                                          | Yellow      | -          | 1                  | 1                 | N                     |
|                                  | Shoulder and roadside deficiencies - Risks associated with safety barriers and obstacles            | Yellow      | -          | 1                  | <b>↑</b>          | Y                     |
|                                  | Shoulder and roadside deficiencies- <b>sight obstructions</b> (Landscape, Obstacles and Vegetation) | Yellow      | -          | -                  | -                 | Y                     |

### Overall progress to date



- A remarkable contribution to the DSS
  - 600 studies on risk factors (290 on infrastructure)
  - 3500 effects of risk factors
- Comprehensive summaries of existing knowledge
  - More than 70 synopses of risk factors (38 on infrastructure)
  - 10 original meta-analyses: workzones, distraction etc.
- Ranking of risk factors
  - Risky, probably risky, unclear
  - Effect on crash risk, crash frequency, severity
- SafetyCube DSS under development
  - Pilot operation expected early 2017
  - Opening expected mid 2017

AFB20(2) ROADSIDE DESIGN SAFETY
International Research Activities Subcommittee

#### **Contact**

- www.SafetyCube-project.eu
- Pete Thomas, Professor of Road and Vehicle Safety
- p.d.thomas@lboro.ac.uk
- Smart and Safe Mobility Research Cluster
   Loughborough University
   Leicestershire, LE11 3TU, United Kingdom

Tel: +44 (0)1509 226931







# Roadside and Median Deficiencies

within the *SafetyCube* Road Safety Decision Support System

Eleonora Papadimitriou, Athanasios Theofilatos & George Yannis National Technical University of Athens, Greece



AFB20(2) ROADSIDE DESIGN SAFETY
International Research Activities Subcommittee