

at 14:00

#### National Technical University of Athens www.nrso.ntua.gr Road Safety Observatory

Workshop Monday in the framework of the FOURTH UNITED NATIONS GLOBAL ROAD SAFETY May



WEEK

### The future of road safety research

### Monitoring Driver Behaviour **Through Mobile Phones** OSeven

### **Dimitrios I. Tselentis**

**Civil - Transportation Engineer** Ph.D. Candidate – Researcher

Website: www.nrso.ntua.gr/dtsel/ e-mail: dtsel@central.ntua.gr

#### **NTUA Zografou Campus, Athens** Railways Amphitheatre of the Department of Transportation Planning and Engineering

Together with:

Eleni Vlahogianni, Manos Barbounakis, Panagiotis Papantoniou, Eleonora Papadimitriou, George Yannis Scope



The development of the OSeven Smartphone application (http://www.oseven.io/) was initiated by the need for **collecting and analysing driving behaviour data**:

- from naturalistic driving conditions
- of a large-scale
- through cost effective solutions
- and transmit them in real time

Started in late 2014 and continuously progressing.







## Past limitations

- Limiting barriers existed so far:
- Mobile phone technology
- High cost of:
  - In-vehicle data recording systems (e.g. OBD)
  - Data plans
  - Cloud computing
- Low penetration rate of smartphones and social networks
- Inability to manage and exploit Big Data
- ...have now been <u>eliminated</u>.

Current **technological advances** make it substantially easier for experts to collect and exploit data easier and more accurately through mobile phones.







## Data flow



- A mobile App recording user's behaviour using mobile phone sensors (automatic start / stop)
- A variety of APIs to read sensor data recorded and temporarily store it to mobile phone
- **Data transmission** from the mobile App to the central database via an appropriate communication channel such as:
  - Wi-Fi network (online)
  - Cellular network such as a 3G/4G network (online)
  - Bluetooth (offline)



Source: OSeven Telematics





- Data is stored in a sophisticated **database** where managed and processed
- **Indicators** result from the mobile phone data process using machine learning algorithms and data mining techniques
- Results Visualization
  - Mobile App
  - Web Portal



Source: OSeven Telematics



## Smartphone data





- Accelerometer\*
- Gyroscope\*
- Magnetometer
- GPS (speed, course, longitude, latitude)
- Fusion Data provided by iOS and Android:
  - Yaw, pitch, roll
  - Linear acceleration\*
  - Gravity\*
    - \*(x, y, z components)

#### - **Recording** at a maximum frequency of 1Hz



#### **Risk exposure indicators**:

- Total distance (mileage).
- Driving duration
- Type(s) of the road network used (given by GPS position and integration with map providers e.g. Google, OSM)
- Time of the day driving (Rush hours, Risky hours)
- Weather conditions
- Trip purpose

combined with **other data sources** (speed limits and detailed accident maps).





www.nrso.ntua.gr



Dimitris Tselentis, Monitoring driver behaviour through mobile phones - OSeven

## Methodological challenges (2/2)

#### **Driving behaviour indicators:**

- **Speeding** (duration of speeding, Speed Limit exceedance etc.)
- Number and severity of harsh events
  - Harsh braking (longitudinal acceleration)
  - Harsh acceleration (longitudinal acceleration)
  - Harsh cornering (angular speed, lateral acceleration, course)
- Driving **aggressiveness** (e.g. braking, acceleration)
- **Distraction** from mobile phone use







www.nrso.ntua.gr



**Speeding behaviour** is found to be correlated with several other driving behaviour parameters:

- Frequency and severity of **harsh events**:
  - Acceleration
  - Deceleration
  - Cornering
- Driving **aggressiveness** during the trip (e.g. acceleration profile)
- Mobile phone usage
- Total Mileage
- Traffic conditions
- Route frequency









## Future challenges (1/2)

- Monitoring driver behaviour through mobile phones makes gradually possible the continuous driver assessment, opening a new great potential for traffic and safety behaviour improvement, used either:
- Independently by the drivers in order to:
  - raise awareness and engagement on safe and eco-driving
  - receive feedback and support on driving performance and risks
- Through **customized insurance schemes** by correlating driving exposure and behaviour with insurance premiums:
  - pay-as-you-drive (PAYD)
  - pay-how-you-drive (PHYD)





www.nrso.ntua.gr



## Future challenges (2/2)



- Advanced machine-learning algorithms
- Big data analysis handling mining
- **Correlation** between accidents and driving indicators
- Developing user-friendly Apps for driving recording
- User engagement
- **Battery** consumption
- Personal data **privacy**









at 14:00

### National Technical University of Athens Road Safety Observatory

Monday **Monday Monday Solution S** 

# Save Lives

### The future of road safety research

## Monitoring Driver Behaviour Through Mobile Phones **OSeven**

### **Dimitrios I. Tselentis**

Civil - Transportation Engineer Ph.D. Candidate – Researcher

Website: <u>www.nrso.ntua.gr/dtsel/</u> e-mail: <u>dtsel@central.ntua.gr</u>

#### Together with:

Eleni Vlahogianni, Manos Barbounakis, Panagiotis Papantoniou, Eleonora Papadimitriou, George Yannis

#### NTUA Zografou Campus, Athens Railways Amphitheatre of the Department of Transportation Planning and Engineering