SafeFITS
A Global Road Safety Model
For Future Inland Transport Systems

Prof. George Yannis,
Dr. Eleonora Papadimitriou and Katerina Folla

Department of Transportation Planning and Engineering
National Technical University of Athens, Athens, Greece
Background

- Road accidents constitute a major social problem in modern societies, with road traffic injuries being estimated as the eighth leading cause of death globally.
- Particularly in low and middle income countries, road traffic injuries rates are twice those in high income countries and still increasing.
- UN Decade of Action: need to strengthen global and national efforts for casualty reduction through evidence-based approaches.
Objective

- To develop a macroscopic **road safety model** to serve as a road safety decision making tool for national and local governments both in developed and developing countries, based on the related scientific knowledge and data available worldwide.

- Based on work carried out in the framework of the “**Safe Future Inland Transport Systems (SafeFITS)**” project of the United Nations Economic Commission for Europe (UNECE), financed by the International Road Union (IRU).
Research challenges for a global model

- The relationships between indicators and road safety outcomes are complex and in some cases random.
- The problem is multi-dimensional, and transferability of known causalities in a global context is not recommended.
- Existing knowledge on road safety causalities is incomplete, and comes mostly from industrialized countries.
- There is lack of detailed historical data on several indicators and road safety outcomes at international level.
Conceptual Framework

Based on the five pillars of WHO Global Plan of Action (WHO, 2011) and an improved version of the SUNflower pyramid (2002):

SafeFITS layers
1. Economy and Management
2. Transport Demand and Exposure
3. Road Safety Measures
4. Road Safety Performance Indicators
5. Fatalities and Injuries

SafeFITS pillars
1. Road Safety Management
2. Road Infrastructure
3. Vehicle
4. User
5. Post-Crash Services
Architecture of the database

- Data from the five layers and the five pillars

- **International databases** explored: WHO, UN, IRF, OECD, etc.

- Data for **130 countries** with population higher than 2.8 million inhabitants

- Data refer to **2013** or latest available year
Economy and Management

Demographic and Economic Characteristics
- Population (World Bank Database)
- Area (World Bank Database)
- GNI per capita in US dollars (World Bank Database)
- Projected GDP per capita for 2015-2030 in 2010 US dollars (ERS International Macroeconomic Data Set)

Road Safety Management Indicators (WHO)
- Existence of RS lead agency
- The lead agency is funded
- Existence of national RS strategy
- The RS strategy is funded
- Existence of RS fatality targets
Transport Demand and Exposure

Roads
- Road *network density* (IRF)
- Percentage of *motorways* (IRF)
- Percentage of *paved roads* (IRF, CIA)

Vehicles (IRF)
- Number of *vehicles in use* in total and by type of vehicle

Traffic (IRF)
- *Traffic Volume*
- Inland surface *passengers transport*
- Inland surface *freight transport*
Road Safety Measures (1/2)

Roads (WHO)
- Road safety audits on new roads
- Existence of speed law
- Max speed limits on urban roads (no speed limits; >50 km/h; ≤50 km/h)
- Max speed limits on rural roads (no speed limits; 100-120 km/h; 70-90 km/h; ≤70 km/h)
- Max speed limits on motorways (no speed limits; ≤100 km/h; 100-120 km/h; ≥120 km/h)

Vehicles
- Existence of ADR law (UNECE)
- Vehicle standards include seat-belts, electronic stability control, pedestrian protection (WHO)
- New cars subjected to NCAP (WHO)

Post-crash care (WHO)
- Training in emergency medicine for doctors
- Training in emergency training for nurses
Road Safety Measures (2/2)

Road User (WHO)
• Existence of drink-driving law
• Allowed BAC limits (3 separate variables for general population, young/novice drivers, commercial drivers)
• Existence of national seat-belt law
• The seat-belt law applies to all occupants
• Existence of national child restraint law
• Existence of national helmet law
• The law requires helmet to be fastened
• The helmet law defines specific helmet standards
• Existence of national law on mobile phone use while driving
• The law applies to hand-held phones
• The law applies to hands-free phones
• Existence of penalty point system
Road Safety Performance Indicators

Traffic law enforcement (WHO)
- Assessment of effectiveness of seat-belt law enforcement
- Assessment of effectiveness of drink-driving law enforcement
- Assessment of effectiveness of speed law enforcement
- Assessment of effectiveness of helmet law enforcement

Road User (WHO)
- Seat-belt wearing rates in **front seats**
- Seat-belt wearing rates in **rear seats**
- Helmet wearing rates – driver

Post-crash care
- Estimated percentage of **seriously injured patients** transported by ambulance (WHO)
- Number of **hospital beds** per population (World Bank Database)
Fatalities and Injuries

- **Estimated number of road traffic fatalities** (WHO)
- **Estimated road traffic fatality rates per 100,000 population** (WHO)
- **Distribution of road traffic fatalities by road user type** (WHO)
- **Distribution of road traffic fatalities by gender** (WHO)
- **Percentage of road traffic fatalities attributed to alcohol** (WHO)
Database overview

• Wherever data for 2013 were not available, the latest data available were used.

• The missing values of each indicator of the countries were filled with the mean value of the indicator in their regions.

• The respective information of each variable is properly represented in the database for the statistical process.

• Data for most variables were available for almost all countries.

• Low data availability is observed for few variables regarding:
 • the restraint use rates
 • the percentage of fatalities attributed to alcohol
 • the distribution of fatalities by road user type
 • transport demand and exposure indicators
Model Development

- Data Analysis Methodology
- Estimation of Composite Variables
- Development of Statistical Model
 Correlating road safety outcomes with composite variables
- Model Validation

George Yannis, Professor NTU Athens
Data Analysis Methodology

• Two-step approach of statistical modeling:
 • Estimation of composite variables (factor analysis) in order to take into account as many indicators as possible of each layer
 • Correlating road safety outcomes with indicators through composite variables by developing a regression model with explicit consideration of the time dimension

• Model specification

\[
\text{Log}(\text{Fatalities per Population})_{ti} = A_i + \text{Log}(\text{Fatalities per Population})_{(t-T)} + B_i \times \text{GDP}_{ti} + K_i \times [\text{Economy \& Management}] + L_i \times [\text{Transport demand \& Exposure}]_{ti} + M_i \times [\text{Road Safety Measures}]_{ti} + N_i \times [\text{RSPI}]_{ti} + \epsilon_i
\]

Where [Composite Variable]
Calculation of composite variables – Economy and Management

\[
[\text{Comp}_\text{EM}] = -0.250 \times (\text{EM}_2 _\text{lt15yo}) + 0.229 \times (\text{EM}_3 _\text{gt65yo}) + 0.228 \times (\text{EM}_4 _\text{UrbanPop}) + 0.224 \times (\text{EM}_7 _\text{NationalStrategy}) + 0.221 \times (\text{EM}_8 _\text{NationalStrategyFunded}) + 0.222 \times (\text{EM}_9 _\text{FatalityTargets})
\]

Indicator loadings and coefficients on the estimated factor (composite variable) on Economy and Management

<table>
<thead>
<tr>
<th>Component</th>
<th>Loadings</th>
<th>Score coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM1_Popdensity</td>
<td>,091</td>
<td>,029</td>
</tr>
<tr>
<td>EM2_Lṭ15yo</td>
<td>-,778</td>
<td>-,250</td>
</tr>
<tr>
<td>EM3_gt65yo</td>
<td>,714</td>
<td>,229</td>
</tr>
<tr>
<td>EM4_UrbanPop</td>
<td>,709</td>
<td>,228</td>
</tr>
<tr>
<td>EM5_LeadAgency</td>
<td>,284</td>
<td>,091</td>
</tr>
<tr>
<td>EM6_LeadAgencyFunded</td>
<td>,226</td>
<td>,073</td>
</tr>
<tr>
<td>EM7_NationalStrategy</td>
<td>,697</td>
<td>,224</td>
</tr>
<tr>
<td>EM8_NationalStrategyFunded</td>
<td>,626</td>
<td>,201</td>
</tr>
<tr>
<td>EM9_FatalityTargets</td>
<td>,692</td>
<td>,222</td>
</tr>
</tbody>
</table>
Calculation of composite variables – Transport Demand and Exposure

$$[\text{Comp}_TE] = 0.161 (\text{TE1}_\text{RoadNetworkDensity}) + 0.149 (\text{TE2}_\text{Motorways}) + 0.238 (\text{TE3}_\text{PavedRoads}) + 0.272 (\text{TE4}_\text{VehiclesPerPop}) + 0.267 (\text{TE5}_\text{PassCars}) - 0.221 (\text{TE7}_\text{PTW}) - 0.117 (\text{TE10}_\text{PassengerFreight})$$

Indicator loadings and coefficients on the estimated factor (composite variable) on Transport Demand and Exposure

<table>
<thead>
<tr>
<th>Loadings</th>
<th>Score coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE1_RoadNetworkDensity</td>
<td>0.497</td>
</tr>
<tr>
<td>TE2_Motorways</td>
<td>0.460</td>
</tr>
<tr>
<td>TE3_PavedRoads</td>
<td>0.734</td>
</tr>
<tr>
<td>TE4_VehiclesPerPop</td>
<td>0.839</td>
</tr>
<tr>
<td>TE5_PassCars</td>
<td>0.825</td>
</tr>
<tr>
<td>TE6_VansLorries</td>
<td>-0.132</td>
</tr>
<tr>
<td>TE7_PTW</td>
<td>-0.681</td>
</tr>
<tr>
<td>TE8_Vehkm_Total</td>
<td>0.269</td>
</tr>
<tr>
<td>TE9_RailRoad</td>
<td>0.136</td>
</tr>
<tr>
<td>TE10_PassengerFreight</td>
<td>-0.360</td>
</tr>
</tbody>
</table>
Calculation of composite variables - Measures

$$[\text{Comp}_\text{ME}] = 0.069(\text{ME2}_\text{ADR}) + 0.045(\text{ME4}_\text{SpeedLimits}_\text{urban}) + 0.064(\text{ME6}_\text{SpeedLimits}_\text{motorways}) + 0.088(\text{ME7}_\text{VehStand}_\text{seatbelts}) + 0.091(\text{ME8}_\text{VehStand}_\text{SeatbeltAnchorages}) + 0.092(\text{ME9}_\text{VehStand}_\text{FrontImpact}) + 0.091(\text{ME10}_\text{VehStand}_\text{Sidimpact}) + 0.090(\text{ME11}_\text{VehStand}_\text{ESC}) + 0.087(\text{ME12}_\text{VehStand}_\text{PedProtection}) + 0.090(\text{ME13}_\text{VehStand}_\text{ChildSeats}) + 0.068(\text{ME15}_\text{BAClimits}) + 0.068(\text{ME16}_\text{BAClimits}_\text{young}) + 0.065(\text{ME17}_\text{BAClimits}_\text{commercial}) + 0.057(\text{ME19}_\text{SeatBeltLaw}_\text{all}) + 0.063(\text{ME20}_\text{ChildRestraintLaw}) + 0.034(\text{ME22}_\text{HelmetFastened}) + 0.038(\text{ME23}_\text{HelmetStand}) + 0.038(\text{ME24}_\text{MobileLaw}) + 0.035(\text{ME25}_\text{MobileLaw}_\text{handheld}) + 0.038(\text{ME27}_\text{PenaltyPointSyst}) + 0.040(\text{ME29}_\text{EmergTrain}_\text{nurses})$$

<p>| Indicator loadings and coefficients on the estimated factor (composite variable) on Measures |</p>
<table>
<thead>
<tr>
<th>Component</th>
<th>Loadings</th>
<th>Score coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME1_RSA</td>
<td>.245</td>
<td>.025</td>
</tr>
<tr>
<td>ME2_ADR</td>
<td>.681</td>
<td>.069</td>
</tr>
<tr>
<td>ME3_SpeedLaw</td>
<td>.229</td>
<td>.023</td>
</tr>
<tr>
<td>ME4_Speedlimits_urban</td>
<td>.443</td>
<td>.045</td>
</tr>
<tr>
<td>ME5_Speedlimits_rural</td>
<td>.200</td>
<td>.020</td>
</tr>
<tr>
<td>ME6_Speedlimits_motorways</td>
<td>.634</td>
<td>.064</td>
</tr>
<tr>
<td>ME7_VehStand_seatbelts</td>
<td>.877</td>
<td>.088</td>
</tr>
<tr>
<td>ME8_VehStand_SeatbeltAnchorages</td>
<td>.906</td>
<td>.091</td>
</tr>
<tr>
<td>ME9_VehStand_FrontImpact</td>
<td>.908</td>
<td>.092</td>
</tr>
<tr>
<td>ME10_VehStand_Sidimpact</td>
<td>.904</td>
<td>.091</td>
</tr>
<tr>
<td>ME11_VehStand_ESC</td>
<td>.891</td>
<td>.090</td>
</tr>
<tr>
<td>ME12_VehStand_PedProtection</td>
<td>.862</td>
<td>.087</td>
</tr>
<tr>
<td>ME13_VehStand_ChildSeats</td>
<td>.896</td>
<td>.090</td>
</tr>
<tr>
<td>ME14_DrinkDrivingLaw</td>
<td>.670</td>
<td>.068</td>
</tr>
<tr>
<td>ME15_BAClimits</td>
<td>.670</td>
<td>.068</td>
</tr>
<tr>
<td>ME16_BAClimits_young</td>
<td>.645</td>
<td>.065</td>
</tr>
<tr>
<td>ME17_BAClimits_commercial</td>
<td>.297</td>
<td>.030</td>
</tr>
<tr>
<td>ME18_SeatBeltLaw</td>
<td>.570</td>
<td>.057</td>
</tr>
<tr>
<td>ME19_SeatBeltLaw_all</td>
<td>.628</td>
<td>.063</td>
</tr>
<tr>
<td>ME20_ChildRestraintLaw</td>
<td>.236</td>
<td>.024</td>
</tr>
<tr>
<td>ME21_HelmetLaw</td>
<td>.334</td>
<td>.034</td>
</tr>
<tr>
<td>ME22_HelmetFastened</td>
<td>.379</td>
<td>.038</td>
</tr>
<tr>
<td>ME23_HelmetStand</td>
<td>.375</td>
<td>.038</td>
</tr>
<tr>
<td>ME24_MobileLaw</td>
<td>.350</td>
<td>.035</td>
</tr>
<tr>
<td>ME25_MobileLaw_handheld</td>
<td>.295</td>
<td>.030</td>
</tr>
<tr>
<td>ME26_MobileLaw_handfree</td>
<td>.378</td>
<td>.038</td>
</tr>
<tr>
<td>ME27_PenaltyPointSyst</td>
<td>.178</td>
<td>.018</td>
</tr>
<tr>
<td>ME28_EmergTrain_doctors</td>
<td>.399</td>
<td>.040</td>
</tr>
<tr>
<td>ME29_EmergTrain_nurses</td>
<td>.399</td>
<td>.040</td>
</tr>
</tbody>
</table>

George Yannis, Professor NTU Athens
Calculation of composite variables - SPIs

\[\text{Comp}_{PI} = 0.144 (\text{PI1}_\text{SeatBeltLaw}_{\text{enf}}) + 0.155 (\text{PI2}_\text{DrinkDrivingLaw}_{\text{enf}}) + 0.152 (\text{PI3}_\text{SpeedLaw}_{\text{enf}}) + 0.160 (\text{PI4}_\text{HelmetLaw}_{\text{enf}}) + 0.155 (\text{PI5}_\text{SeatBelt_rates_front}) + 0.146 (\text{PI6}_\text{SeatBelt_rates_rear}) + 0.150 (\text{PI7}_\text{Helmet_rates_driver}) + 0.127 (\text{PI8}_\text{SI_ambulance}) + 0.116 (\text{PI9}_\text{HospitalBeds}) \]

Indicator loadings and coefficients on the estimated factor (composite variable) on SPIs

<table>
<thead>
<tr>
<th>Component</th>
<th>Loadings</th>
<th>Score coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{PI1}\text{SeatBeltLaw}{\text{enf}}</td>
<td>.756</td>
<td>.144</td>
</tr>
<tr>
<td>\text{PI2}\text{DrinkDrivingLaw}{\text{enf}}</td>
<td>.812</td>
<td>.155</td>
</tr>
<tr>
<td>\text{PI3}\text{SpeedLaw}{\text{enf}}</td>
<td>.795</td>
<td>.152</td>
</tr>
<tr>
<td>\text{PI4}\text{HelmetLaw}{\text{enf}}</td>
<td>.837</td>
<td>.160</td>
</tr>
<tr>
<td>\text{PI5}_\text{SeatBelt_rates_front}</td>
<td>.811</td>
<td>.155</td>
</tr>
<tr>
<td>\text{PI6}_\text{SeatBelt_rates_rear}</td>
<td>.766</td>
<td>.146</td>
</tr>
<tr>
<td>\text{PI7}_\text{Helmet_rates_driver}</td>
<td>.784</td>
<td>.150</td>
</tr>
<tr>
<td>\text{PI8}_\text{SI_ambulance}</td>
<td>.667</td>
<td>.127</td>
</tr>
<tr>
<td>\text{PI9}_\text{HospitalBeds}</td>
<td>.607</td>
<td>.116</td>
</tr>
</tbody>
</table>
Final Statistical Model

The **optimal performing model** for the purposes of the analysis

- **Dependent variable** is the logarithm of the fatality rate per population for 2013
- The main **explanatory variables** are the respective logarithm of fatality rate in 2010 and the respective logarithm of GDP per capita for 2013
- Four **composite** variables: the economy & management, the transport demand and exposure, the measures, and the SPIs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
<th>Hypothesis Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1,694</td>
<td>.2737</td>
<td>1,157 - 2,230</td>
<td>38,291</td>
</tr>
<tr>
<td>Comp_ME</td>
<td>-.135</td>
<td>.0646</td>
<td>-.261 -.008</td>
<td>4,358</td>
</tr>
<tr>
<td>Comp_TE</td>
<td>-.007</td>
<td>.0028</td>
<td>-.013 -.002</td>
<td>7,230</td>
</tr>
<tr>
<td>Comp_PI</td>
<td>-.007</td>
<td>.0030</td>
<td>-.013 -.001</td>
<td>5,652</td>
</tr>
<tr>
<td>Comp_EM</td>
<td>.007</td>
<td>.0051</td>
<td>-.003 .017</td>
<td>2,009</td>
</tr>
<tr>
<td>LNFestim_2010</td>
<td>.769</td>
<td>.0462</td>
<td>.678 .859</td>
<td>276,322</td>
</tr>
<tr>
<td>LNGNI_2013</td>
<td>-.091</td>
<td>.0314</td>
<td>-.153 -.030</td>
<td>8,402</td>
</tr>
<tr>
<td>(Scale)</td>
<td>.038</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>1379.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>df</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td><.001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

George Yannis, Professor NTU Athens
In order to **assess** the model, a comparison of the observed and the predicted values was carried out:

- The mean absolute prediction error is estimated at **2.7 fatalities per population**, whereas the mean percentage prediction error is estimated at **15%** of the observed value.
- The model is of **very satisfactory performance** as regards the good performing countries (low fatality rate) and of **quite satisfactory performance** as regards the medium performing countries.
Model Validation

In order to validate the model, a cross-validation was carried out with two subsets:

- 80% of the sample was used to develop (fit) the model, and then the model was implemented to predict the fatality rate for 2013 of the 20% of the sample not used.
- 70% of the sample was used to develop (fit) the model, and then the model was implemented to predict the fatality rate for 2013 of the 30% of the sample not used.

![Validation on 20% of the sample](image)

![Validation on 30% of the sample](image)
Examples of model application for forecasting fatalities 2013-2030:

• one low performance country

• two middle performance countries

• one high performance country
Model limitations and future improvements

• The model was developed on the basis of *the most recent and good quality data available internationally*, and by means of rigorous statistical methods. However, data and analysis methods always have some limitations.

• Data are primarily *directed at vehicle occupants* and thus, effects on road safety outcomes of VRUs may not be captured.

• The effects of interventions may not reflect the unique contribution of each separate intervention. It is strongly recommended to test combinations of “similar” interventions (e.g. several vehicle standards, several types of enforcement or safety equipment use rates etc.)

• The factor analysis procedure does not assume or indicate that a causal relationship exists.

• The calibration with new data will be the ultimate way to fully assess the performance of the model.

George Yannis, Professor NTU Athens
Benefits for the Policy Makers

- The first global road safety model to be used for policy support
 - Global assessments (i.e. monitoring the global progress towards the UN road safety targets)
 - Individual country assessments of various policy scenarios

- A framework which enhances the understanding of road safety causalities, as well as of the related difficulties.

- Full exploitation of the currently available global data, and use of rigorous analysis techniques, to serve key purposes in road safety policy analysis: benchmarking, forecasting.

- An important step for monitoring, evidence-base and systems approach to be integrated in decision-making.

George Yannis, Professor NTU Athens
SafeFITS
A Global Road Safety Model
For Future Inland Transport Systems

Prof. George Yannis,
Dr. Eleonora Papadimitriou and Katerina Folla

Department of Transportation Planning and Engineering
National Technical University of Athens, Athens, Greece