

Transportation Research Board 97th Annual Meeting

January 7–11, 2018 = Washington, D.C.

ANB20 - Safety Data, Analysis, and Evaluation Committee

Developing a Global Road Safety Model

George Yannis¹, Eleonora Papadimitriou¹, Katerina Folla¹ Nenad Nikolic², Eva Molnar²

¹Department of Transportation Planning and Engineering, NTUA, Greece ²UN Economic Commission for Europe, Sustainable Transport Division, Switzerland

Washington, D.C., 9 January 2018

Objective

- To develop a macroscopic road safety decision making tool that will assist governments and decision makers, both in developed and developing countries, to decide on the most appropriate road safety policies and measures in order to achieve tangible results.
- Based on work carried out in the framework of the "Safe Future Inland Transport Systems (SafeFITS)" project of the United Nations Economic Commission for Europe (UNECE), financed by the International Road Union (IRU).

Conceptual Framework

Based on the five pillars of WHO Global Plan of Action (WHO, 2011) and an improved version of the SUNflower pyramid (2002):

SafeFITS layers

- 1. Economy and Management
- 2. Transport Demand and Exposure
- 3. Road Safety Measures
- 4. Road Safety Performance Indicators
- 5. Fatalities and Injuries

SafeFITS pillars

- 1. Road Safety Management
- 2. Road Infrastructure
- 3. Vehicle
- 4. User
- 5. Post-Crash Services

- P	Contraction of the
181	(Ja 1997)
(5)	28 福祉
151	CT 🕸
15.	1/2
14	97

		PILLARS						
		1. Road Safety Management	2. Road Infrastructure	3. Vehicle	4. User	5. Post-Crash Services		
	1. Economy & Management	Economic Deve- lopments, Strategy & Targets, Regu- latory framework (compliance with UN regulations)	Existence of motorways, of non-paved roads, of road tunnels, Existence of guidelines (for design, RSA etc.), Legislation on speeding	Number of regi- stered vehicles, Vehicle age, Technical inspe- ction legislation (maintenance, roadworthiness, overweight, ADR)	Requirements & regulations on drivers' licensing, Drivers' training, Medical exams of drivers, Legislation on alcohol / use of seatbelts / use of heimets	Trauma management sector level of development Number of hospitals / doctors / Intensive Care (IC) beds per population		
LAYERS	2 Transport demand & exposure	Transport Modal Split (road/rail, passerger/ineight, private/public), Share of urban areas, Weather conditions	Exposure with regard to road type, Length of road per road type, Share of Motorway length out of the total road network, Number of railway level crossings	Exposure with regard to vehicle type, Share of PTW, HGV / carriage of dangerous goods vehicles in the vehicle fielt	Exposure with regard to age & gender			
	3 Road Safety Measures	Assessment of measures, Data collection & analysis, International comparisons, Vehicle taxation, Road pricing	Treatment of High Risk Sites, Road Safety Audits, Turnel Road Safety Manage- ment, Improve- ment of signage, Installation of road restraint systems, Lighting, Speed limits in urban areas Traffic Calimino	Renewel rate of vehicle fleet, Measures for second-hand vehicles, Vehicle related roadside controls, Automated driving	Enforcement, campaigns, Road safety education, Training	e-call, First aid training, Existence & organisation of trauma centers		
	4 Road Safety Performance Indicators	Safety targets, stakeholdens' involvement, detail of analysis for intervention selection, economic evaluation	Number of RSAs conducted, Percentage of High Risk Sites treated	Global NCAP score, Mean age of the vehicle fleet per vehicle type, Existence of safety equipment, e-safety	Speeding / Drink & drive infringe- ments, Seatbelts use, Helmets use, Driver distraction, Driver fatigue	Emergency response time, Type of field treatment in hospital, Number of ambulances per population, Number of good samaritanians per		
	5. Fatalities & Injuries	Fatalities / injuries per million inhabitants, fatalities / injuries per million passenger cars, fatalities / injuries per 10 bilion passenger-km	Fatalities / injuries in motorways, in 2-lane rural roads, in urban roads	Share of motorcycle fatalities out of the total fatalities	Sham of pedestrian / bicyclist / motorcyclist fatalities out of the total fatalities, drink-driving related fatalities	Death rate, Hospitalization in IC Unit, Total length of hospitalization		

Architecture of the Database

- Data from the five layers and the five pillars
- International databases explored: WHO, UN, IRF, OECD, etc.
- Data for **130 countries** with population higher than 2,8 million inhabitants
- Data refer to 2013 or latest available year

Database Overview

- Wherever data for 2013 were not available, the **latest data available** were used.
- The missing values of each indicator of the countries were filled with **the mean value** of the indicator in their regions.
- The respective information of each variable is **properly represented** in the database for the statistical process.
- Data for most variables were available for almost all countries.
- Low data availability is observed for few variables regarding:
 - the restraint use rates
 - the percentage of fatalities attributed to alcohol
 - the distribution of fatalities by road user type
 - transport demand and exposure indicators

Data Analysis Methodology

- **Two-step approach** of statistical modeling:
 - Estimation of **composite variables** (factor analysis) in order to take into account as many indicators as possible of each layer
 - Correlating road safety outcomes with indicators through composite variables by developing a regression model with explicit consideration of the time dimension

Model specification

 $\begin{array}{l} Log(Fatalities \ per \ Population)_{ti} = A_i + Log(Fatalities \ per \\ Population)_{(t-\tau)} + B_i \ ^* \ GDP_{ti} \ + K_i \ ^* \ [Economy \ \& \ Management]_{ti} \ + Li \\ ^* \ [Transport \ demand \ \& \ Exposure]_{ti} \ + M_i \ ^* \ [Road \ Safety \ Measures]_{ti} \\ + \ N_i \ ^* \ [RSPI]_{ti} \ + \ \varepsilon_i \end{array}$

Where [Composite Variable]

[Comp_EM] = -0.250 (EM2_lt15yo) + 0.229 (EM3_gt65yo) + 0.228 (EM4_UrbanPop) + 0.224 (EM7_NationalStrategy) + 0.221 (EM8_NationalStrategyFunded) + 0.222 (EM9_FatalityTargets) Indicator loadings and coefficients on the estimated factor (composite variable) on Economy and Management

	Component		
	Loadings	Score coefficients	
EM1_Popdensity	,091	,029	
EM2_lt15yo	-,778	-,250	
EM3_gt65yo	,714	,229	
EM4_UrbanPop	,709	,228	
EM5_LeadAgency	,284	,091	
EM6_LeadAgencyFunded	,226	,073	
EM7_NationalStrategy	,697	,224	
EM8_NationalStrategyFunded	,626	,201	
EM9_FatalityTargets	,692	,222	

Calculation of composite variables – Transport Demand and Exposure

[[Comp_TE] = 0.161 (TE1_RoadNetworkDensity) + 0.149 (TE2_Motorways) + 0.238 (TE3_PavedRoads) + 0.272 (TE4_VehiclesPerPop) + 0.267 (TE5_PassCars) -0.221 (TE7_PTW) - 0.117 (TE10_PassengerFreight) Indicator loadings and coefficients on the estimated factor (composite variable) on Transport Demand and Exposure

	Component		
	Loadings	Score coefficients	
TE1_RoadNetworkDensity	,497	,161	
TE2_Motorways	,460	,149	
TE3_PavedRoads	,734	,238	
TE4_VehiclesPerPop	,839	,272	
TE5_PassCars	,825	,267	
TE6_VansLorries	-,132	-,043	
TE7_PTW	-,681	-,221	
TE8_Vehkm_Total	,269	,087	
TE9_RailRoad	,136	,044	
TE10_PassengerFreight	-,360	-,117	

Calculation of composite variables - Measures

 $[Comp_ME] = 0.069(ME2_ADR) +$ 0.045(ME4 SpeedLimits urban) + 0.064(ME6 SpeedLimits motorways) + 0.088(ME7_VehStand_seatbelts) + 0.091(ME8_VehStand_SeatbeltAnchorages) + 0.092(ME9_VehStand_FrontImpact) + 0.091(ME10 VehStand SideImpact) + 0.090(ME11 VehStand ESC) + 0.087(ME12 VehStand PedProtection) + 0.090(ME13 VehStand ChildSeats) + 0.068(ME15_BAClimits) + 0.068(ME16_BAClimits_young) + 0.065(ME17 BAClimits commercial) + 0.057(ME19 SeatBeltLaw all) + 0.063(ME20 ChildRestraintLaw) + 0.034(ME22 HelmetFastened) + 0.038(ME23_HelmetStand) + 0.038(ME24_MobileLaw) + 0.035(ME25 MobileLaw handheld) + 0.038(ME27_PenaltyPointSyst) + 0.040(ME29_EmergTrain_nurses)

George Yannis, Professor NTU Athens

	Component		
	Loadings	Score coefficients	
ME1_RSA	,245	,025	
ME2_ADR	,681	,069	
ME3_SpeedLaw	,229	,023	
ME4_SpeedLimits_urban	,443	,045	
ME5_SpeedLimits_rural	,200	,020	
ME6_SpeedLimits_motorways	,634	,064	
ME7_VehStand_seatbelts	,877	,088	
ME8_VehStand_SeatbeltAnchorages	,906	,091	
ME9_VehStand_FrontImpact	,908	,092	
ME10_VehStand_SideImpact	,904	,091	
ME11_VehStand_ESC	,891	,090	
ME12_VehStand_PedProtection	,862	,087	
ME13_VehStand_ChildSeats	,896	,090	
ME14_DrinkDrivingLaw	,126	,013	
ME15_BAClimits	,670	,068	
ME16_BAClimits_young	,670	,068	
ME17_BAClimits_commercial	,645	,065	
ME18_SeatBeltLaw	,297	,030	
ME19_SeatBeltLaw_all	,570	,057	
ME20_ChildRestraintLaw	,628	,063	
ME21_HelmetLaw	,236	,024	
ME22_HelmetFastened	,334	,034	
ME23_HelmetStand	,379	,038	
ME24_MobileLaw	,375	,038	
ME25_MobileLaw_handheld	,350	,035	
ME26_MobileLaw_handsfree	-,295	-,030	
ME27_PenaltyPointSyst	,378	,038	
ME28_EmergTrain_doctors	,178	,018	
ME20 EmorgTrain nurses	200	040	

Indicator loadings and coefficients on the estimated factor (composite variable) on Measures

Calculation of composite variables - SPIs

[Comp_PI] = 0.144 (PI1_SeatBeltLaw_enf) + 0.155 (PI2_DrinkDrivingLaw_enf) + 0.152 (PI3_SpeedLaw_enf) + 0.160 (PI4_HelmetLaw_enf) + 0.155 (PI5_SeatBelt_rates_front) + 0.146 (PI6_SeatBelt_rates_rear) + 0.150 (PI7_Helmet_rates_driver) + 0.127 (PI8_SI_ambulance) + 0.116 (PI9_HospitalBeds) Indicator loadings and coefficients on the estimated factor (composite variable) on SPIs

	Component		
	Loadings	Score coefficients	
PI1_SeatBeltLaw_enf	,756	,144	
PI2_DrinkDrivingLaw_enf	,812	,155	
PI3_SpeedLaw_enf	,795	,152	
PI4_HelmetLaw_enf	,837	,160	
PI5_SeatBelt_rates_front	,811	,155	
PI6_SeatBelt_rates_rear	,766	,146	
PI7_Helmet_rates_driver	,784	,150	
PI8_SI_ambulance	,667	,127	
PI9_HospitalBeds	,607	,116	

Final Statistical Model

The **optimal performing model** for the purposes of SafeFITS

- **Dependent variable** is the logarithm of the fatality rate per population for 2013
- The main **explanatory variables** are the respective logarithm of fatality rate in 2010 and the respective logarithm of GNI per capita for 2013
- Four **composite** variables: the economy & management, the transport demand and exposure, the measures, and the SPIs

			95% Confide	ence Interval	Нурс	t	
Parameter	В	Std. Error	Lower	Upper	Wald Chi- Square	df	p-value
(Intercept)	1,694	,2737	1,157	2,230	38,291	1	<,001
Comp_ME	-,135	,0646	-,261	-,008	4,358	1	,037
Comp_TE	-,007	,0028	-,013	-,002	7,230	1	,007
Comp_PI	-,007	,0030	-,013	-,001	5,652	1	,017
Comp_EM	,007	,0051	-,003	,017	2,009	1	,156
LNFestim_2010	,769	,0462	,678	,859	276,322	1	<,001
LNGNI_2013	-,091	,0314	-,153	-,030	8,402	1	,004
(Scale)	,038						
Likelihood Ratio	1379,00						
df	6						
p-value	<,001						

Statistical Model Assessment

In order to **assess** the model, a comparison of the observed and the predicted values was carried out:

- The mean absolute prediction error is estimated at 2.7 fatalities per population, whereas the mean percentage prediction error is estimated at 15% of the observed value.
- The model is of very satisfactory performance as regards the good performing countries (low fatality rate) and of quite satisfactory performance as regards the medium performing countries.

Statistical Model Validation

In order to validate the model, a cross-validation was carried out with two subsets:

- 80% of the sample was used to develop (fit) the model, and then the model was implemented to predict the fatality rate for 2013 of the 20% of the sample not used
- 70% of the sample was used to develop (fit) the model, and then the model was implemented to predict the fatality rate for 2013 of the 30% of the sample not used

SafeFITS Model Demonstration

The overall model implementation includes 3 distinct steps:

- Step 1 Countries Benchmark
- Step 2 Forecast with no new interventions
- Step 3 Forecast with interventions

undran Perman	Poincial Report General	80								
derventions Year		Benchmark Type		Seeder Durm						
2022	(•)	Gobal	•	Abasia			Reset to Defa	ut.		
Intervention Group 1	Invervention Group 2	Invervention Group 3			Variable	Base Case	Intervention Set 1	Intervention Set 2	Intervention Set 3	
Economy and	Economy and	Economy and			Fatattes	17.05	16.25	16.57	96.72	
Management	Management	Management			Ofference from Base Case	1	411	-0.47	-0.33	
National Road Safety Strategy	National Road Safety Strategy	National Road Safety Strategy			Percentile Officence	*** ***	-4.17	278	#Et-	
18 1	10 1	Vec. +	36							
Funded Strategy	Funded Strategy	Funded Strategy								
Epitety +	Particip	Dataly +						-		
Fatulity Reduction Target	Fatality Reduction Target	Fatality Reduction Target	a ²⁰			-				
35	38	Yes •	ata				-	-		
Transport Demand And Exposure	Transport Demand And Exposure	Transport Demand And Exposure	15	<	-	_				
Road Network Density	Road Network Density	Road Network Censily						_		
0.63	0.63	6.62	10							
Motonezys (%)	Matanways (%)	Motorways (%)		2015		2020	Vear	262	5.	203
8	1	101			Internetiene al	Content Torond	 Interview C-I 1 	& Information Col 91	Interneting Cal 3	
Paved Roads (%) Paved Roads (%) Paved Roads (%)		Paved Roads (%)	Estalition	- Current	Trend in 2025	Verbix India	Completion of 1	Check action of a	Electronic del 9	
Cesee America (14)										

Model limitations and future improvements

- The SafeFITS model was developed on the basis of **the most recent and good quality data available internationally**, and by means of rigorous statistical methods. However, data and analysis methods always have some limitations.
- Data are primarily **directed at vehicle occupants** and thus, effects on road safety outcomes of VRUs may not be captured.
- The effects of interventions may not reflect the unique contribution of each separate intervention. It is strongly recommended to **test combinations of "similar" interventions** (e.g. several vehicle standards, several types of enforcement or safety equipment use rates etc.)
- The factor analysis procedure **does not assume or indicate that a direct causal relationship exists**.
- The **calibration with new data** will be the ultimate way to fully assess the performance of the model.

Benefits for the Policy Makers

- The first global road safety model to be used for policy support
 - Global assessments (i.e. monitoring the global progress towards the UN road safety targets)
 - Individual country assessments of various policy scenarios
- A framework which enhances the understanding of road safety causalities, as well as of the related difficulties.
- Full exploitation of the currently available global data, and use of rigorous analysis techniques, to **serve key purposes in road safety policy analysis**: benchmarking, forecasting.
- An important step for **monitoring**, evidence-base and systems approach to be integrated in decision-making.

Transportation Research Board 97th Annual Meeting

January 7–11, 2018 = Washington, D.C.

ANB20 - Safety Data, Analysis, and Evaluation Committee

Developing a Global Road Safety Model

George Yannis¹, Eleonora Papadimitriou¹, Katerina Folla¹ Nenad Nikolic², Eva Molnar²

¹Department of Transportation Planning and Engineering, NTUA, Greece ²UN Economic Commission for Europe, Sustainable Transport Division, Switzerland

Washington, D.C., 9 January 2018