

Athens Regional Workshop On setting up road safety reliable, harmonized and comparable data collection system and sharing at regional level 8-10 May 2018

Road Accident Statistics The Greek Experience

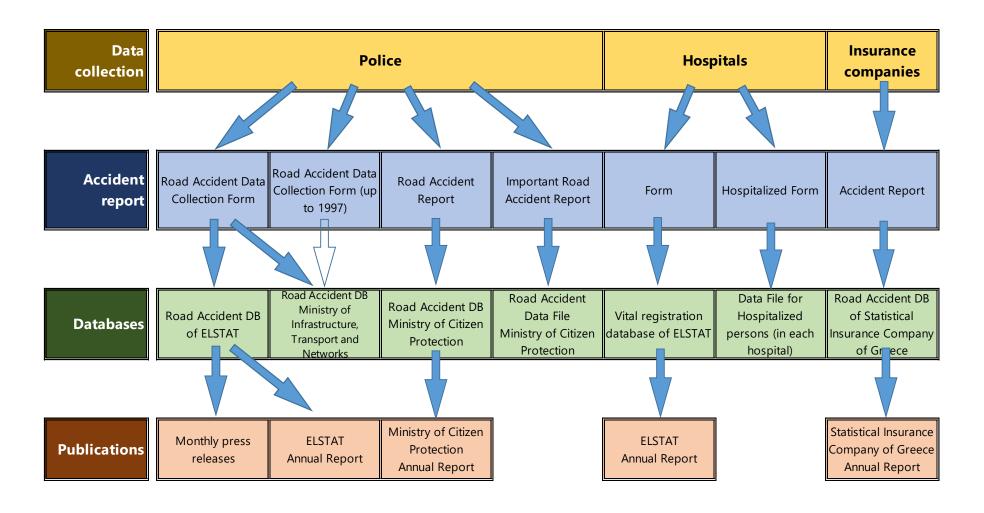
George Yannis, Professor, Katerina Folla, Researcher National Technical University of Athens <u>www.nrso.ntua.gr/geyannis</u>

Basic road safety figures, Greece 2007-2017

Road fatalities characteristics, Greece 1991-2016

Greece 1991 - 2016

Road Fatalities Basic Characteristics


	122	200	10000	ALC: N	200	333	10000	3333		1000	200	2004	2000		3344	1000	100	-		3000		1860	2000	-300		300		Change
	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2016	5006 - 5011
Total road fatalities					2,411		_1108							1,570				1,553		1,258	1,141	308			793		100%	- 50
Pedestrians titled																											11176	-44
Motorcyclists killed										100								-194									29%	-45
Moped riders killed		188				103								- 55			48				34						3.6	-56
Cyclists tillled																											260	-18
Killed in socidents with HGV		196					186						188										65				7%	-98
Young drivers killed (18-24)		300								Jan				198		221		186									8%	-70
Young riders hilled (15-24)																												
Older drivers killed (65+)					讲籍		140												100								14%	- 18
Children killed (0-14)																					12						25	-4
Men drivers littled											1.054						345	250					138				62%	-14
Women drivers tilled					90																						5% 7%	-28
Non-national drivers tilled																				100						#		-57
Non national riders tilled																											246	-41
Inside built up eress																											52%	-41
Outside built up areas																	588			665				384	405		40%	-5
anches - Inside built up areas														2019		222					140		129	182			15%	-4
sctions - Outside built up eress							240			100				96													3%	- 77
On motorways												±0															5%	-81
When raining			191																		1119						8%	-54
During daylight																											0.6%	- 48
During nightime							578				加						649	632									41%	-5
Med in single vehicle accidents		1.166	1.153	1,207		1.004	1,105									100									+63		57%	- 4
noval change of total fatalities																								0.0%				
Severity			9.7																	8.4			7.3					

A spectacular decrease in road fatalities for young people
 (70%) and in junctions
 outside built up areas (72%)
 is observed during the last decade.

- Notes: Severity fatalities / 760 injury accidents
 | Salund: January 2nd, 2018 | Severity fetalities / 760 injury accidents | Severity fetalities / 760 injur
- Fatalities decrease during the last decade is quite limited for cyclists, older drivers, and female drivers.

Data collection and processing in Greece

The role of Police

- The **Police** is the first to arrive at the accident site and the last to update the related data
- Responsible to
 - **Forward** the data to the Hellenic Statistical Authority (ELSTAT)
 - **Maintain** the National Data File
- Draw up an accident report by filling-in an accident data collection form
- Task on accident site
 - Carry out an investigation
 - Fill-in autopsy report, and part of the road accident data collection form (completed later on at the police headquarters)
- The road accident data collection forms are finalised with the necessary updates within 30 days from the day of the accident
- The source with the **most detailed data** collected at national level in terms of variables and values collected

ELSTAT Database

- Detailed Disaggregate Data
- Accident
- Vehicle
- Casualties
- Road Accident Data Collection Form (DOTA)
- Updated in 1996
- Fatality Definition: Common European definition (killed within 30 days from the day of the accident)
- Statistics
- Publication of aggregate statistics
- Provide with data international organizations (CARE, Eurostat, OECD etc.)

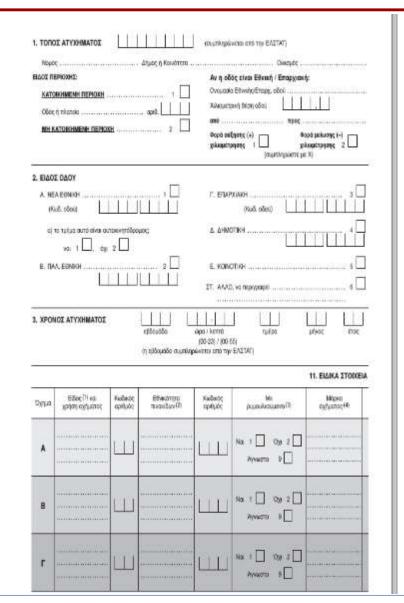
EADRIKH AUSHIS PATA
YIBO PTEIO OIKONOMIAE KALUIKONOMIAEN
EENIKI PAMMATEIA
BOOKIS ETATEETIKIE YIBIPPELIKE FIRE EAAAAGE
FUMKH AIEVSPYNER ETATEETIKON EPEYKEN
AIEVSPYNER KODERNIKIN ETATEETIKIN
TMIIMA ETATEETIKSIN AIKAIGEVSHE
KALAIMINEELA TAESE
KALAIMINEELA TAESE

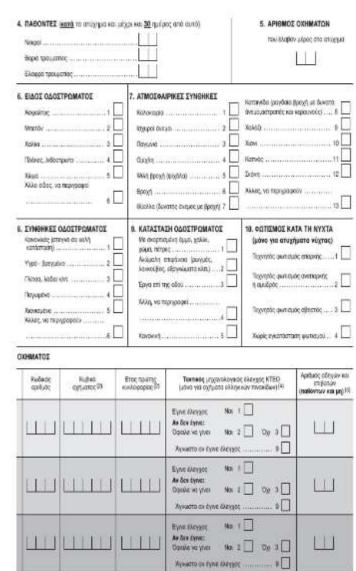
Tity, Av ov. Hittytskic; 46 km, Titovinnis 185 10 Titopris; Tifkipuse: 210 4832771, 210 4832770 Fito: 210 4832764 E-mail programs statistica gr Το πημεχόμενο του εχοιτημοτολογίου είναι μεταιτιστικό και θα χρητημοτοιθή αποκείνατα για στιστικούς σκολοίς. Η παροχή στοιχείων είναι ιστοχριστική (Ν.Α. 362)/1966. Ν. 2392/1966. και Ν. 3472/2006, κηθήο Μ.Ι.

AEATIO

ΟΔΙΚΟΥ ΤΡΟΧΑΙΟΥ ΑΤΥΧΗΜΑΤΟΣ

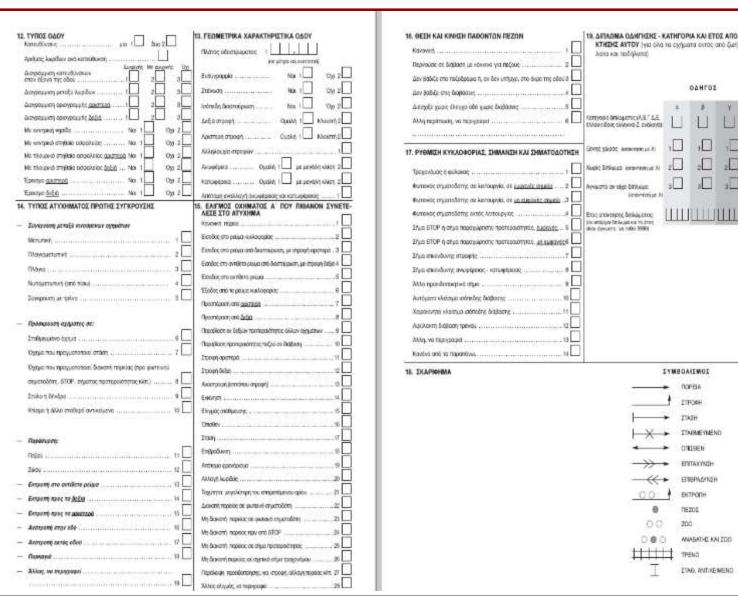
έγια τη συμελήρωσή του, διαβάστε προσακτικά τις οδηγίες στο τέλος!


ΑΛΑ ΔΕΛΤΙΩΝ ΔΕΣΜΙΔΑΣ	L
	m:
Bathas	Trji.t povo
Πμερομηνία συντάξεως Δελτίου	
	ofα Διέλτιου στο Νομό


ΠΕΙΡΑΙΑΣ, 2010

Road Accident Data Collection Form (1/3)

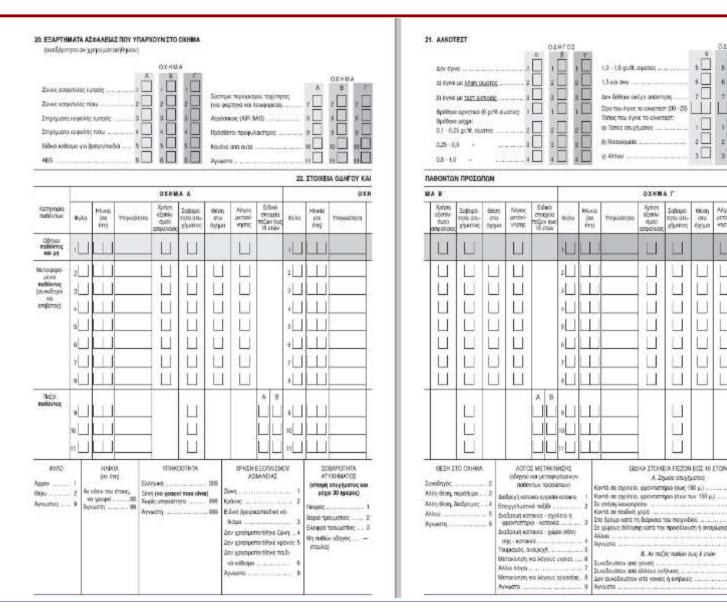
- Type of accident
- Type of area (inside/ outside built-up area)
- Type of road
- Time of accident (week/ time/ day/ month/ year)
- Injured persons (fatally, seriously, slightly)
- Number of vehicles involved
- Type of road surface
- Weather conditions
- Road surface conditions
- Night-lighting
- Specific characteristics of vehicles (type of vehicle, nationality, brand, cc, technical inspection, number of drivers and passengers)



Road Accident Data Collection Form (2/3)

- Road characteristics
- Geometric road characteristics
- Type of accident
- Vehicle maneuver type
- Injured pedestrians' position and movement
- Traffic regulation, signage and signaling
- Driver's license category and year
- Sketch

CONHAG


COMZIAGEMYZ

STAG, AVITKEMEND

Road Accident Data Collection Form (3/3)

- Restraints systems in vehicle
- Alcotest results
- Driver's and injured persons' information

WHETE TOGEN DUC

Data Files for Hospitalized Persons

In Hospitals

- Recording causes of hospitalization
- Recording road accident injured persons
- These files show the lowest degree of incomplete recording
- No central archive is kept, not electronic form

ELSTAT Vital Registration Database

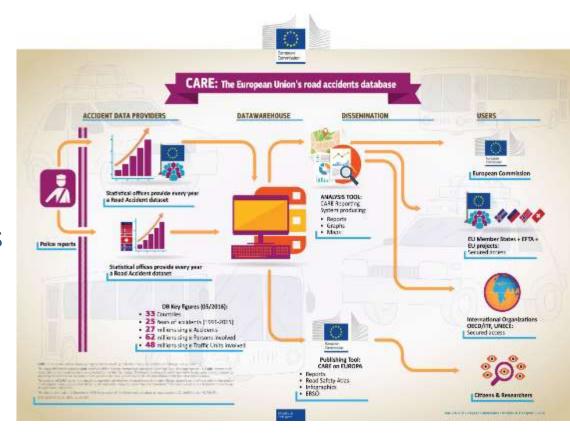
- Recording time and cause of death
- Statistics
- Publication of aggregate statistics

Database of Vehicle Insurance Companies

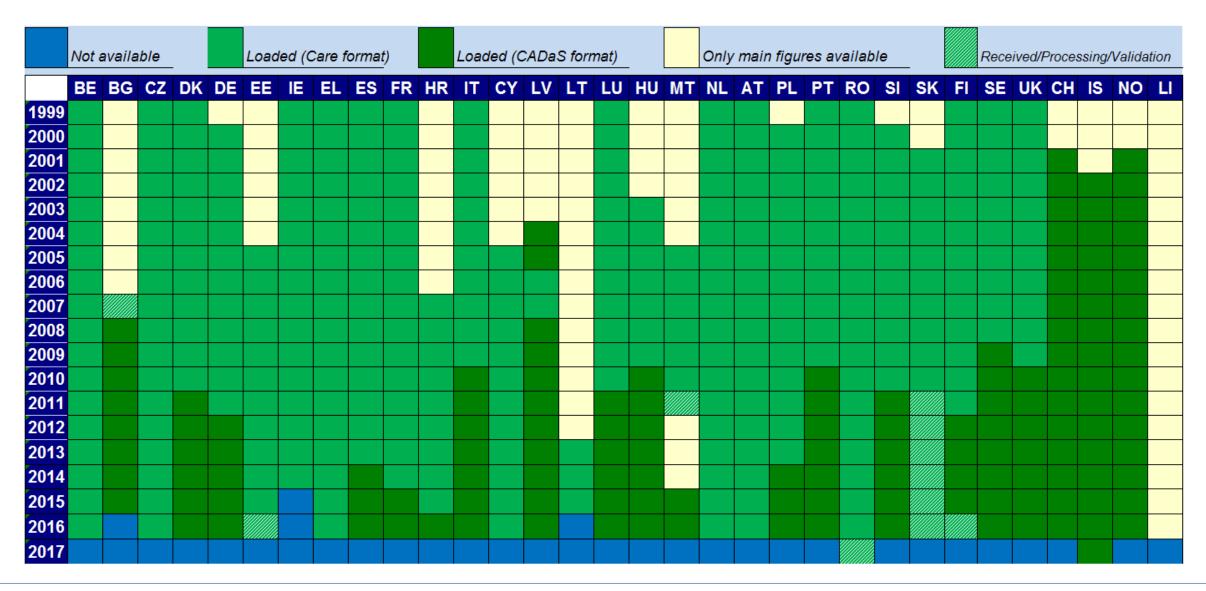
Vehicle Insurance Companies of Greece

- Disaggregate data of road injury accidents and road accidents with only material damages
- Accident
- Driver
- Damage
- It's the unique source of data on road accidents with only material damages
- Only the accidents that are declared are recorded in the database

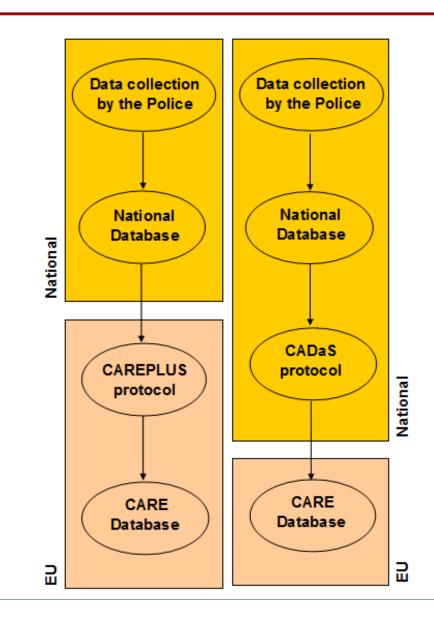
Comparison of Data from Different Sources


		Source		Corre	ection Coefficient	
	ELSTAT*	Police*	Hospital*	Police-ELSTAT	Hospitals/ELSTAT	Average
1990	1.737	1.986	2.247	249	1,29	
1991	1.790	2.013	2.246	223	1,25	
1992	1.829	1.995	2.252	166	1,23	1,20
1993	1.830	2.008	1.986	178	1,09	1,20
1994	1.909	2.076	2.221	167	1,16	
1995	2.043	2.149	2.435	106	1,19	
1996	2.157	2.175	2.540	18	1,18	
1997	2.105	2.141	2.333	36	1,11	
1998	2.182	2.229	2.324	47	1,07	
1999	2.116	2.181	2.226	65	1,05	
2000	2.037	2.103	2.288	66	1,12	
2001	1.880	1.911	2.035	31	1,08	
2002	1.634	1.655	1.865	21	1,14	
2003	1.605	1.613	1.794	8	1,12	
2004	1.670	1.547	1.984	-123	1,19	
2005	1.658	1.470	1.971	-188	1,19	1,15
2006	1.657	1.493	1.851	-164	1,12	1,10
2007	1.612	1.449	1.793	-163	1,11	
2008	1.553	1.550	1.722	-3	1,11	
2009	1.456	1.463	1.647	7	1,13	
2010	1.258	1.281	1.430	23	1,14	
2011	1.141	1.092	1.339	-49	1,17	
2012	988	976	1.191	-12	1,21	
2013	879	865	1.096	-14	1,25	
2014	795	798	1.025	3	1,29	
2015	793	796	956	within 30 days	1,21	

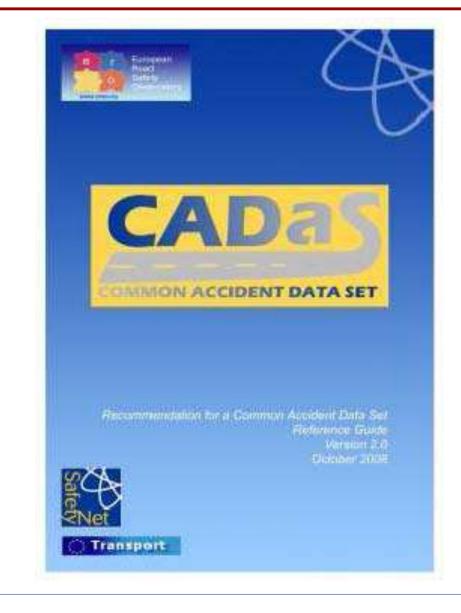
^{*} up to 1995 on accident site, since 1996 within 30 days


EU CARE Database

- CARE the Community database on road accidents resulting in death or injury
- Disaggregate road accident data since 1991
- Parts of the national data sets are integrated into the CARE database in their original national structure and definitions
- For the remaining data, the EC provides and applies a **framework of transformation rules** to the national data sets, allowing CARE to have compatible data
- Common Accident Data Set (CADaS) has been developed consisting of a minimum set of standardised data elements

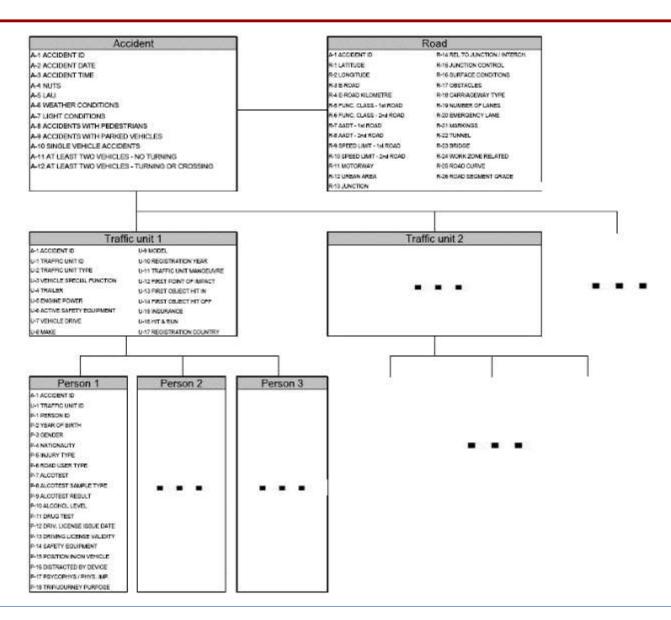

Data Availability in CARE database

Accident Data Transformation Process


- CARE and CADaS process the national road accident data files
- The compatibility of the accident data among EU countries is ensured
- The main difference of the two approaches is related to the degree of involvement of the country in the process
- CADaS process allows for more common variables and values but also for higher quality

Optional Adjustments of the National Systems (1/2)

- EU countries continue using their national accident data collection systems, by collecting data in the way they find it more suitable (manually, electronically, links with other databases, etc.)
- Adjustments are implemented in order to transform data according to the CADaS protocol and provide to EU more compatible data
- Certain variables might need to be collected under a different structure to meet local/regional/national needs


Optional Adjustments of the National Systems (2/2)

- EU countries are encouraged to adopt as many as possible CADaS variables and values
- CADaS is **structured in a simple way**, without levels of hierarchy, constituting in fact the record layout of the data set to be transferred to the EU
- CADaS may also be considered as recommendation for national police road accident data collection reports
- CADaS can be **further enhanced** (derived variables to be added) inside the CARE database allowing for a wide range of analysis reports

CADaS Structure

Variable Categories

- The CADaS variables are divided into
 4 basic categories, identified by the unique letter (code) which refers to the beginning of the respective variable's name:
 - A, for Accident related variables,
 - R, for Road related variables,
 - V, for Vehicle related variables,
 - P, for Person related variables

Variable Components

Variable label

- Section identifier (A, R, V or P)
- Numbering and Name
- Variable rating (H or L)

Variable definition and scope

- Variable definition
- Brief description
- Importance and usefulness (rational lying behind its selection)

Values list

Value Components

Value labels

Each value is further identified by the code of the variable, followed by a number which corresponds to each value and its name

Value definitions

Definition of each value is given, indicating also any particularities and any relevant assumptions regarding its collection process

Data format

- The possibility to attribute one or more values to a variable
- The format of the value (number of digits, decimal places etc.)

Variable Example

A-6 WEATHER CONDITIONS (H)

Variable definition and scope

This variable defines the atmospheric conditions at the accident location at the time of the accident and allows for the identification of the impact of weather conditions to the road safety.

Values

A-6.01 Dry / Clear

A-6.02 Rain

A-6.03 Snow

A-6.04 Fog, Mist, Smoke

A-6.05 Sleet, Hail

A-6.06 Severe winds

A-6.07 Other

A-6.99 Unknown

Value definitions

A-6.01: Dry / Clear

No hindrance from weather. Includes clear and cloudy sky.

A-6.02: Rain

Heavy or light rain at the time of the accident.

A-6.03: Snow

Snowing at the time of the accident.

A-6.04: Fog, Mist, Smoke

Existence of fog or mist or smoke at the time of the accident.

A-6.05: Sleet, Hail

Existence of sleet or hail at the time of the accident.

A-6.06: Severe winds

Presence of winds deemed to have an adverse affect on driving conditions.

A-6.07: Other

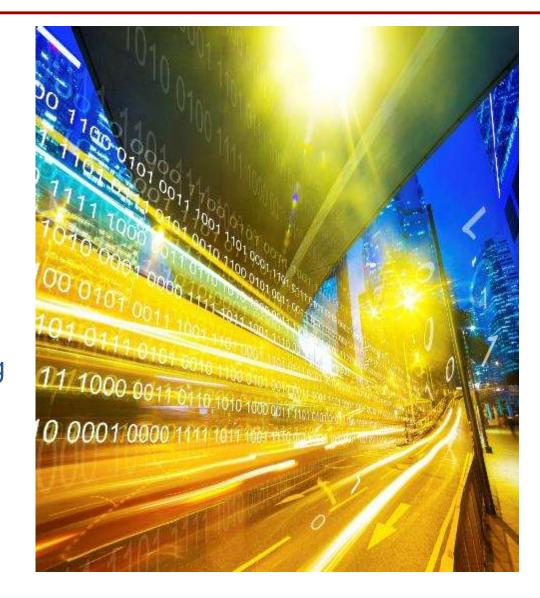
Other atmospheric conditions that affected the drivers or the road environment are not included in the list of the previous values.

A-6.99: Unknown

Atmospheric conditions not recorded or unknown.

Data format

A two digit number corresponding to one of the values is filled-in to indicate the weather conditions.


Summary of CADaS Variables and Values

		Numk	per of variables	Number of values				
Category	Code	High (H) Importance	Lower (L) Importance	Total	Detailed values	Alternative values	Total	
Accident	Α	7	6	13	91	13	104	
Road	R	12	13	25	92	13	105	
Traffic Unit	U	8	10	18	181	15	196	
Person	Р	13	8	21	92	10	102	
Total		40	37	77	456	51	507	

Further considerations on road safety data

- Crash data are meaningful only if they are combined with exposure data (crash per km driven, per traffic characteristics, per time, etc.)
- Crash causalities are revealed when crashes are correlated with safety performance indicators (behaviour, infrastructure, traffic, vehicles)
- The **evaluation of safety measures** effectiveness provides valuable information, necessary for matching problems with solutions
- Analysis of high resolution data reveals hidden and critical crash properties

Athens Regional Workshop On setting up road safety reliable, harmonized and comparable data collection system and sharing at regional level 8-10 May 2018

Road Accident Statistics The Greek Experience

George Yannis, Professor, Katerina Folla, Researcher National Technical University of Athens

www.nrso.ntua.gr/geyannis