Intraindividual variability within and across conditions in driving simulator measures of neurology patients and healthy drivers

A. Economou¹, D. Pavlou², I. Beratis³, G. Yannis², S. G. Papageorgiou³

¹ Department of Psychology, National and Kapodistrian University of Athens, Athens, Greece, ²Department of Transportation Planning and Engineering, National Technical University of Athens, Athens, Greece, ³"Attikon" University General Hospital, Department of Neurology, National and Kapodistrian University of Athens

Intraindividual variability in cognitive measures and reaction time is associated with cognitive impairment or dementia (e.g., Christensen et al., 2005; Thaler et al., 2015). The continuous nature of driving simulator measures lends itself to the study of intraindividual variability but has been investigated to a very limited extent.

The present study examines intraindividual variability in healthy drivers and drivers with neurological disorders in different driving environments and conditions.

Participants

Rural environment:
- 43 healthy drivers over 38 years (age of youngest patient) (M=54.63, SD=10.95)
- 37 mild cognitive impairment (MCI) drivers (M=68.43, SD=9.15)
- 16 mild Alzheimer’s disease (AD) drivers (M=75.38, SD=4.86)
- 15 Parkinson’s disease (PD) drivers (M=62.13, SD=10.24)

Urban environment:
- 33 healthy drivers over the age of 38 (M=56.06, SD=10.51)
- 28 MCI drivers (M=69.68, SD=9.84)
- 8 mild AD drivers (M=76.38, SD=3.89)
- 10 PD drivers (M=62.60, SD=9.18)

Driving simulator experiment

- Data from Distract and DriverBrain research projects
- All participants underwent neurological, neuropsychological and ophthalmological assessment
- **Driving simulator assessment:** all drivers drove a quarter-cab FOERST driving simulator (3 LCD wide screens 42", full HD: 1920x1080 pixels - total field of view 170 degrees, validated against a real world environment) in 4 rural (R) conditions, and 4 urban (U) conditions counterbalanced across participants.
- Rural conditions occurred before urban conditions.
- A practice drive (10-15 minutes) preceded the driving assessment

Measures

- Average speed (in km)
- Headway average (distance from the vehicle ahead in m)
- Lateral position (distance from the right road border in m)
- Average speed variability (SD of average speed)
- Headway variability (SD of headway average)
- Lateral position variability (SD of lateral position)
- Coefficient of Variation (CV) = Intraindividual SD / Intraindividual M

RESULTS

Repeated measure analyses were conducted with condition as within-subject variable and driver group as between-subject variable.

Rural environment

- No effect of driver group for any of the measures
- **Effect of condition:** Greater CV for Headway in R2, R4
- Smaller CV for Lateral position in R2, R4 (ps <0.001)

Urban environment

- Effect of driver group for Headway (MCI, AD < controls), and Lateral position (MCI > controls), (ps <0.01)
- **Effect of condition:** Greater CV for Headway in U2, U4 (ps <0.001)

CONCLUSION

- Intraindividual variability is stable across patient groups in Rural but not in Urban environments once corrected for performance level.
- High traffic conditions result in higher intraindividual variability in Headway (Rural, Urban) and lower intraindividual variability in Lateral position (Rural).
- MCI and mild AD drivers are more variable in Lateral position and less variable in Headway than controls in Urban environments.
- The Urban environment affects variability measures in MCI, mild AD drivers more than the Rural environment.

References