Digital Road Safety

George Yannis
Professor

Department of Transportation Planning and Engineering,
National Technical University of Athens

Website: www.nrso.ntua.gr/geyannis
e-mail: geyannis@central.ntua.gr
Presentation Outline

1. NTUA - Dpt of Transportation Planning & Engineering (2)

2. Background (2)

3. Digital Road Safety Data (9)

4. Feedback on Safety Performance (4)

5. Open Issues (7)

6. Concluding Remarks (2)
Department of Transportation Planning & Engineering

- The mission of the NTUA DTPE is to educate scientists engineers and promote science in the field of transportation planning and engineering.

- The NTUA DTPE is a Research and Innovation Center of Excellence with global recognition [Ranked 9th in Europe, 39th worldwide (Shanghai Ranking’s 2017), Scientific citations: 3rd in Europe, 19th worldwide (Pulse 2017), Road Safety: 2nd in Europe, 6th worldwide (AAP, 2018)].

- A Team of 60+ Scientists: 7 Internationally recognized Professors, 15 Senior Transportation Engineers and PostDoc, 25 PhD Candidates, 15 Transportation Engineers and other scientists.

- NTUA DTPE Activities in figures (since mid 80s):
 - More than 1.100 Diploma and 30 PhD Theses,
 - More than 330 road safety research projects, mostly through highly competitive procedures,
 - More than 1.100 scientific publications (> 400 in Journals), widely cited worldwide,
 - More than 150 scientific committees,
NTUA Road Safety Observatory

- An international reference road safety information system, with most updated data and knowledge, with:
 - more than 3,000 visits per month,
 - tens of items and social media posts/tweets annually
Background
Background

- Road transport is responsible for the majority of transport fatalities, with an annual 1,35 million road traffic deaths worldwide.

- Innovative data-driven solutions could contribute to a proactive approach of addressing road safety problem, which is a core principle of the Safe System.

- The rise of smartphones, sensors and connected objects offers more and more transport data.

- The interpretation of these data can be made possible thanks to progress in computing power, data science and artificial intelligence.
Need for New Data

- Alternative data that could lead to **new road safety analyses** in order to:
 - more efficiently describe the road safety phenomenon
 - address road user behaviour and errors
 - address traffic and infrastructure issues in a proactive manner

- Continuous **driver support** with aim to improve driver behavior and develop better road safety culture at all road users, stakeholders and the Authorities
Digital Road Safety Data
Road Safety Data (1/3)

- **Mobile Phone Data**
 - Sensor Based Data (e.g. Google Maps, Waze)
 - Cellular Network Data (e.g. AT&T)
- **Vehicle On-Board Diagnostics Data**
 (e.g. BMW, Mercedes-Benz, Volvo)
- **Data from Cameras**
 - Inside and outside on-vehicle
 - Out vehicle
 - On the road (cities, operators)
- **Data from Car Sharing Services**
 (e.g. Uber, Lyft)
- **Data from Bike Sharing Services**
 (e.g. 8D Technologies, Mobike)
- **Social Media Data**
 (e.g. Facebook, Twitter)
Road Safety Data (2/3)

- **Public Authorities Sensor Data**
 (e.g. Ministries, Public Transport Authorities, Cities, Regions)

- **Private Agencies’ Sensor Data**
 (e.g. INRIX, Waycare)

- **Travel Cards Data**
 (e.g. Oyster card, Opal card)

- **Weather Data**
 (e.g. AccuWeather, ClimaCell)

- **Census Data**
 (e.g. Eurostat, National Statistics)
Road Safety Data (3/3)

- GPS traces of the app users are the main core data elements.

- Data coming from connected navigation devices (embedded in cars, applications in smartphones etc.)

- Various sources may be combined by some companies: vehicle sensors, smartphones, PNDs, road sensors, connected cars, fleet management companies etc.

- Data related to road network, traffic parameters and speed are the most available.

- Traffic accidents may be recorded as a subgroup of recorded incidents mainly through:
 - Crowdsourcing,
 - Partnerships,
 - Algorithmically generated flow-based incidents
Accident Data Collection (1/2)

- Automatic data collection is possible through
 - instrumented floating vehicles and/or
 - smartphones (hard braking, poor road surfaces, speed).

- **Active safety systems** can also be considered among surrogate safety metrics, such as:
 - ABS for anti-lock braking,
 - ESP for electronic stability control and
 - AEB for autonomous emergency braking
Accident Data Collection (2/2)

- Technologies like **automatic crash notification** and **event data recorders** propose data-driven responses to post-crash problems.

- **Street imagery**, also collected by floating vehicles, supports the assessment of road safety performance (star-rating for roads).

- **Drones and satellites** complement the range of data, capture solutions and play an increasing role.
Cooperative-Intelligent Transport Systems

- **Cooperative ITS (C-ITS)** technology will enable connected vehicles to openly broadcast not only their position regularly but also warning messages.
 - Talk to each other
 - Report on the system performance in real time

- C-ITS have been developed mainly by and for the **automotive industry**.

- There is a risk that C-ITS do not contribute to the improvement of **VRUs’ safety**.
On Board Diagnostics (OBD)

- OBD is referring to a vehicle's self-diagnostic and reporting capability
- It provides access to data from the engine control unit (ECU)
- Continuous data collection from the OBD and the smartphone is much easier today
- An OBD device can be easily installed in the vehicle at an affordable price.
- OBD integrates GSM/GPRS technology which records and transmits critical driving behaviour features such as:
 - Mileage driven
 - Road network used (through GPS position)
 - Duration and time of the day driving
 - Harsh braking
 - Harsh acceleration
 - Speed
 - Fuel consumption
Telematics

- A range of **telematics solutions** already exist for:
 - fleet management,
 - usage-based insurance,
 - eco-driving and
 - safe driving coaching.

- **Smartphones** are becoming increasingly popular in those applications.

- Current **technological advances** make data collection and exploitation substantially easier and more accurate through mobile phones.
Feedback on Safety Performance
Use of Technology for all Road Users’ Support

- **Cooperative ITS technology** will enable every vehicle to openly broadcast its position regularly and to broadcast warning messages when relevant.

- In order to benefit the wider community, including non-connected vehicles, smartphones could be integrated in the C-ITS eco-system, so they are used as receivers.

- **Authorities** should also allocate frequency bands for C-ITS safety application.

- **Revision of trigger mechanisms** for automatic crash notification (e.g. e-Call) or event data recorder (EDR) systems, so that VRUs will also benefit from them.
Monitoring Driver Behaviour

- New vehicles can include **distraction and drowsiness alerts** as standard.
- Crash investigators could have access to **eye tracking data** through event data recorders.
- **Smartphone apps** developed by insurers should prevent drivers from using the phone.
- Share data to cap driving hours in the **gig economy**.
- Ride-sourcing and delivery platforms **sharing data on driving and riding time** via the licence number for preventing gig economy sector from breaking the driving hours restrictions.
Driver Performance Telematics Feedback

- Feedback to the driver through the **Driver Performance Telematics** (vehicle or smartphone)
- **Real time feedback**
 + avoid distraction
 - produce distraction
- Safety performance **star rating**
 + engage in the long term
 + great motivation to improve driving behaviour
 + identification of need for re-training
 - demotivation in case of non progress
 - demotivation when non favorable comparison with peers
- The **feedback loop** should be optimized.
VRU Data Crowdsourcing

- **Cyclists and Pedestrians** report:
 - safety problems (roads, behavior)
 - exposure (routes, traffic, etc.)
 - crash data (with injuries, material damage only)
 - star rating

- Not uniform nor systematic reporting practices though

- Feedback on **network safety performance**
 - useful for the cyclists
 - useful for the decision makers (all levels)
 - useful for business
Open Issues
Critical Issues (1/2)

- Punishment Vs Positive Feedback (Incentives)
- Regulatory and Voluntary Data
- Secure *anonymisation* might increase penetration (e.g. blockchain)
- Ownership of data
- Exploitation of data (charging schemes)
- Sharing of safety data (EU legislation)
Critical Issues (2/2)

- Harmonisation and compatibility of:
 - data
 - metrics
 - data collection methodologies
 - data processing methodologies

- Define proper and properly the KPIs
- Clean properly the data
- Linking KPIs with respective interventions

- Define safety policy focus (behavior, VRUs, infrastructure, traffic)
- Control in-vehicle distraction devices
Technology Weaknesses

- Big Data is not only prone to many of the same **errors and biases** in smaller data sets, it also creates new ones.

- Big data creates **privacy threats**, especially with the risk of re-identification of individuals in datasets.

- **Hacking** is an important risk requiring advanced protection measures.

- Drivers using social driving apps may be **distracted** by new services (navigation, coaching, C-ITS alerts, infotainment, etc.).
Privacy Protection

- Explicit **guidelines** should be available to stakeholders concerning the protection of personal data, but also to offer reassurance on the legality of data collection and analysis.

- The use of strong **de-identification techniques**, **data aggregation** and **encryption techniques** are critical.

- Issues concerning **video images** used for close call analysis should be addressed.
Big Data versus Big Biases

- Every data set should be considered biased towards some user groups, trip purposes or in any other dimension.

- The consequences of using data which isn’t representative of the whole population should be assessed.

- There is a high risk for decision makers to be misled by the opportunistic analysis of seemingly low-cost data in absence of qualified data scientists and statisticians.
Research Challenges

- Research on the **validation of surrogate safety metrics** is needed in order:
 - to reveal which metrics not only are correlated with reported crashes but also have **predictive capabilities**
 - how surrogate safety metrics should include crash participant **fragility, speed, mass** and **crash angle**

- The adoption of surrogate safety metrics leads to the **review of statistical training needs**, so that data are not misused.
 - Urgent links should be created between data industry and research and academia partners

- Support research and innovation in the area of **crash reporting**:
 - **Self-reported traffic injury surveys** could play a role in complementing other datasets.
New Data Sharing Partnerships

- New data ownership frameworks will be developed along the lines of “A New Deal on Data”.

- Partnerships enabling both the private and public sector can be created.
 - Work is required to define the scope and scale of data collection that is in line with public mandates.

- Open source or commercial solutions are developed to collect, harmonise and aggregate mobility data.

- It is suggested that stakeholders make road safety data freely available through such platforms.
Concluding Remarks
Road Safety Technology Perspectives

- **Technology** can be the new road safety driver, through:
 - Public private partnerships
 - Clear problem analyses (well defined objectives)
 - Systematic effectiveness monitoring

- Great **need** for:
 - more data and knowledge
 - better exploitation of current and future data
 - broader geographical coverage

- Data **focus** on:
 - more accurate road accident data
 - exposure data and performance indicators
 - measures and policies effectiveness evaluation
Road Safety Digitalization Perspectives

- **Digitalization** opens great new data possibilities for:
 - road user support and guidance
 - evidence based public and private road safety decision making at all levels

- New great potential for **seamless data driven procedures** from safety problems identification to selection and implementation of optimal solutions

- New increased **net present value of road safety data**, available for (real-time) early problem detection and prompt and customized decision support
Digital Road Safety

George Yannis
Professor

Department of Transportation Planning and Engineering,
National Technical University of Athens

Website: www.nrso.ntua.gr/geyannis
e-mail: geyannis@central.ntua.gr