

Research and Innovation in Safe and Smart Mobility: SEMINAR SERIES Wednesday, 11th September 2019

Digital Road Safety

George Yannis Professor

Department of Transportation Planning and Engineering, National Technical University of Athens

> Website: www.nrso.ntua.gr/geyannis e-mail: geyannis@central.ntua.gr

Presentation Outline

- NTUA Dpt of Transportation Planning & Engineering (2)
- 2. Background (2)
- 3. Digital Road Safety Data (9)
- 4. Feedback on Safety Performance (4)
- 5. Open Issues (7)
- 6. Concluding Remarks (2)

NTUA - Dpt of Transportation Planning & Engineering

Department of Transportation Planning & Engineering

- The mission of the NTUA DTPE is to educate scientists engineers and promote science in the field of transportation planning and engineering.
- The NTUA DTPE is a Research and Innovation Center of Excellence with global recognition [Ranked 9th in Europe, 39th worldwide (Shanghai Ranking's 2017), Scientific citations: 3rd in Europe, 19th worldwide (Pulse 2017), Road Safety: 2nd in Europe, 6th worldwide (AAP, 2018)].
- A Team of 60+ Scientists: 7 Internationally recognized Professors, 15 Senior Transportation Engineers and PostDoc, 25 PhD Candidates, 15 Transportation Engineers and other scientists.
- NTUA DTPE Activities in figures (since mid 80s):
 More than 1.100 Diploma and 30 PhD Theses,
 More than 330 road safety research projects, mostly through highly competitive
 - procedures,
 - More than 1.100 scientific publications (> 400 in Journals), widely cited worldwide,
 - ➢ More than 150 scientific committees,
 - International collaborations: European Commission, UN/ECE, OECD/ITF, WHO, World Bank, EIB, CEDR, FEHRL, ERF, IRF, UITP, ETSC, WCTR, TRB, decades of Universities and Research Centers.

George Yannis, Digital Road Safety

NTUA Road Safety Observatory

- An international reference road safety information system, with most updated data and knowledge, with:
 - > more than 3.000 visits per month,
 - tens of items and social media posts/tweets annually

Background

- Road transport is responsible for the majority of transport fatalities, with an annual 1,35 million road traffic deaths worldwide.
- Innovative data-driven solutions could contribute to a **proactive approach** of addressing road safety problem, which is a core principle of the Safe System.
- The rise of smartphones, sensors and connected objects offers more and more transport data.
- > The interpretation of these data can be made possible thanks to progress in **computing power**, data science and artificial intelligence.

Need for New Data

- Alternative data that could lead to new road safety analyses in order to:
 - more efficiently describe the road safety phenomenon
 - address road user behaviour and errors
 - address traffic and infrastructure issues in a proactive manner

Continuous driver support with aim to improve driver behavior and develop better road safety culture at all road users, stakeholders and the Authorities

Digital Road Safety Data

Road Safety Data (1/3)

Mobile Phone Data

- Sensor Based Data (e.g. Google Maps, Waze)
- Cellular Network Data (e.g. AT&T)
- Vehicle On-Board Diagnostics Data (e.g. BMW, Mercedes-Benz, Volvo)
- Data from Cameras
 - Inside and outside on-vehicle
 - > Out vehicle
 - On the road (cities, operators)
- Data from Car Sharing Services (e.g. Uber, Lyft)
- Data from Bike Sharing Services (e.g. 8D Technologies, Mobike)
- Social Media Data

George Yannis, Digital Road Safety

Road Safety Data (2/3)

- Public Authorities Sensor Data

 (e.g. Ministries, Public Transport Authorities, Cities, Regions)
- Private Agencies' Sensor Data (e.g. INRIX, Waycare)
- Travel Cards Data (e.g. Oyster card, Opal card)
- Weather Data (e.g. AccuWeather, ClimaCell)
- Census Data

 (e.g. Eurostat, National Statistics)

George Yannis, Digital Road Safety

Road Safety Data (3/3)

- GPS traces of the app users are the main core data elements.
- Data coming from connected navigation devices (embedded in cars, applications in smartphones etc.)
- Various sources may be combined by some companies: vehicle sensors, smartphones, PNDs, road sensors, connected cars, fleet management companies etc.
- Data related to road network, traffic parameters and speed are the most available.
- Traffic accidents may be recorded as a subgroup of recorded incidents mainly through:
 - Crowdsourcing,
 - Partnerships,
 - Algorithmically generated flow-based incidents

Accident Data Collection (1/2)

- Automatic data collection is possible through
 - instrumented floating vehicles and/or
 - smartphones (hard braking, poor road surfaces, speed).
- Active safety systems can also be considered among surrogate safety metrics, such as:
 - ABS for anti-lock braking,
 - > ESP for electronic stability control and
 - > AEB for autonomous emergency braking

George Yannis, Digital Road Safety

Accident Data Collection (2/2)

- Technologies like automatic crash notification and event data recorders propose datadriven responses to post-crash problems.
- Street imagery, also collected by floating vehicles, supports the assessment of road safety performance (star-rating for roads).
- Drones and satellites complement the range of data, capture solutions and play an increasing role.

Cooperative-Intelligent Transport Systems

- Cooperative ITS (C-ITS) technology will enable connected vehicles to openly broadcast not only their position regularly but also warning messages.
 - ➤ Talk to each other
 - Report on the system performance in real time
- C-ITS have been developed mainly by and for the automotive industry.
- There is a risk that C-ITS do not contribute to the improvement of VRUs' safety.

On Board Diagnostics (OBD)

- OBD is referring to a vehicle's self-diagnostic and reporting capability
- It provides access to data from the engine control unit (ECU)
- Continuous data collection from the OBD and the smartphone is much easier today
- An OBD device can be easily installed in the vehicle at an affordable price.
- OBD integrates GSM/GPRS technology which records and transmits critical driving behaviour features such as:
 - Mileage driven
 - Road network used (through GPS position)
 - \blacktriangleright Duration and time of the day driving
 - Harsh braking
 - ➤ Harsh acceleration
 - ➤ Speed
 - ➤ Fuel consumption

George Yannis, Digital Road Safety

Telematics

- > A range of **telematics solutions** already exist for:
 - fleet management,
 - usage-based insurance,
 - eco-driving and
 - > safe driving coaching.
- Smartphones are becoming increasingly popular in those applications.
- Current technological advances make data collection and exploitation substantially easier and more accurate through mobile phones.

Feedback on Safety Performance

Use of Technology for all Road Users' Support

- Cooperative ITS technology will enable every vehicle to openly broadcast its position regularly and to broadcast warning messages when relevant.
- In order to benefit the wider community, including nonconnected vehicles, smartphones could be integrated in the C-ITS eco-system, so they are used as receivers.
- Authorities should also allocate frequency bands for C-ITS safety application.
- Revision of trigger mechanisms for automatic crash notification (e.g. e-Call) or event data recorder (EDR) systems, so that VRUs will also benefit from them.

Monitoring Driver Behaviour

- New vehicles can include distraction and drowsiness alerts as standard.
- Crash investigators could have access to eye tracking data through event data recorders.
- Smartphone apps developed by insurers should prevent drivers from using the phone.
- Share data to cap driving hours in the **gig economy**.
- Ride-sourcing and delivery platforms sharing data on driving and riding time via the licence number for preventing gig economy sector from breaking the driving hours restrictions.

Driver Performance Telematics Feedback

- Feedback to the driver through the Driver
 Performance Telematics (vehicle or smartphone)
- real time feedback
 + avoid distraction
 - produce distraction
- safety performance star rating
 + engage in the long term
 + great motivation to improve driving behaviour
 + identification of need for re-training
 demotivation in case of non progress
 - demotivation when non favorable comparison with peers
- > The feedback loop should be optimized.

VRU Data Crowdsourcing

Cyclists and Pedestrians report:

- safety problems (roads, behavior)
- exposure (routes, traffic, etc.)
- crash data (with injuries, material damage only)
- star rating
- Not uniform nor systematic reporting practices though
- Feedback on network safety performance
 - useful for the cyclists
 - useful for the decision makers (all levels)
 - useful for business

Critical Issues (1/2)

- Punishment Vs Positive Feedback (Incentives)
- Regulatory and Voluntary Data
- Secure anonymisation might increase penetration (e.g. blockchain)
- Ownership of data
- Exploitation of data (charging schemes)
- Sharing of safety data (EU legislation)

Critical Issues (2/2)

- Harmonisation and compatibility of:
 - > data
 - metrics
 - data collection methodologies
 - data processing methodologies
- Define proper and properly the KPIs
- Clean properly the data
- Linking KPIs with respective interventions
- Define safety policy focus (behavior, VRUs, infrastructure, traffic)
- Control in-vehicle distraction devices

Technology Weaknesses

- Big Data is not only prone to many of the same errors and biases in smaller data sets, it also creates new ones.
- Big data creates privacy threats, especially with the risk of re-identification of individuals in datasets.
- Hacking is an important risk requiring advanced protection measures.
- Drivers using social driving apps may be distracted by new services (navigation, coaching, C-ITS alerts, infotainment, etc.).

Privacy Protection

- Explicit guidelines should be available to stakeholders concerning the protection of personal data, but also to offer reassurance on the legality of data collection and analysis.
- The use of strong de-identification techniques, data aggregation and encryption techniques are critical.
- Issues concerning video images used for close call analysis should be addressed.

Big Data versus Big Biases

- Every data set should be considered biased towards some user groups, trip purposes or in any other dimension.
- The consequences of using data which isn't representative of the whole population should be assessed.
- There is a high risk for decision makers to be misled by the opportunistic analysis of seemingly low-cost data in absence of qualified data scientists and statisticians.

Research Challenges

- Research on the validation of surrogate safety metrics is needed in order:
 - to reveal which metrics not only are correlated with reported crashes but also have predictive capabilities
 - how surrogate safety metrics should include crash participant fragility, speed, mass and crash angle
- The adoption of surrogate safety metrics leads to the review of statistical training needs, so that data are not misused.
 - Urgent links should be created between data industry and research and academia partners
- Support research and innovation in the area of crash reporting:
 - Self-reported traffic injury surveys could play a role in complementing other datasets.

New Data Sharing Partnerships

- New data ownership frameworks will be developed along the lines of "A New Deal on Data".
- Partnerships enabling both the private and public sector can be created.
 - Work is required to define the scope and scale of data collection that is in line with public mandates.
- Open source or commercial solutions are developed to collect, harmonise and aggregate mobility data.
- It is suggested that stakeholders make road safety data freely available through such platforms.

Concluding Remarks

Road Safety Technology Perspectives

- Technology can be the new road safety driver, through:
 - > Public private partnerships
 - Clear problem analyses (well defined objectives)
 - Systematic effectiveness monitoring
- Great need for:
 - more data and knowledge
 - better exploitation of current and future data
 - broader geographical coverage
- Data focus on:
 - more accurate road accident data
 - exposure data and performance indicators
 - measures and policies effectiveness evaluation

Road Safety Digitalization Perspectives

- Digitalization opens great new data possibilities for:
 - road user support and guidance
 - evidence based public and private road safety decision making at all levels
- New great potential for seamless data driven procedures from safety problems identification to selection and implementation of optimal solutions
- New increased net present value of road safety data, available for (real-time) early problem detection and prompt and customized decision support

Research and Innovation in Safe and Smart Mobility: SEMINAR SERIES Wednesday, 11th September 2019

Digital Road Safety

George Yannis Professor

Department of Transportation Planning and Engineering, National Technical University of Athens

> Website: www.nrso.ntua.gr/geyannis e-mail: geyannis@central.ntua.gr