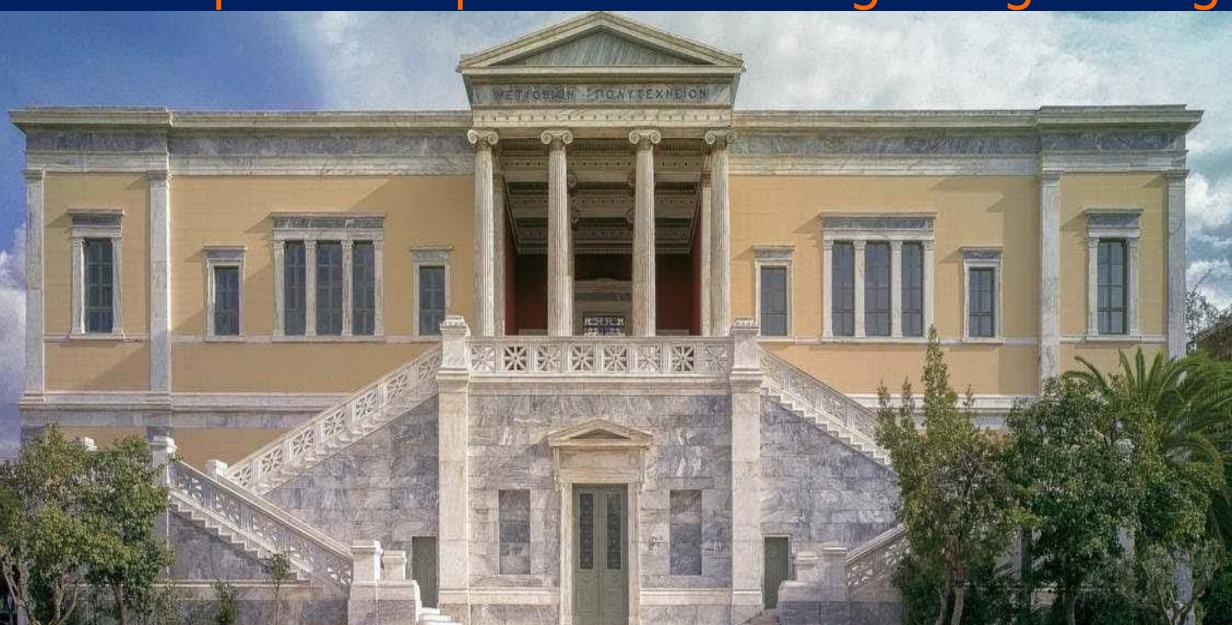
boussias communications

Connected Cars Conference Athens, 18 September 2019

Telematics, Big Data and Road Safety

George Yannis, Professor Katerina Folla, Research Assistant Dimitrios Nikolaou, Research Assistant

Department of Transportation Planning and Engineering, National Technical University of Athens


Presentation Outline

- 1. NTUA Dpt of Transportation Planning and Engineering (2)
- 2. Background (2)
- 3. Road Safety Big Data (5)
- 4. Telematics for Driver Performance Feedback (7)
- 5. Open Issues (6)
- 6. Concluding Remarks (2)

NTUA - Dpt of Transportation Planning & Engineering

Department of Transportation Planning & Engineering

- The mission of the NTUA DTPE is to educate scientists engineers and promote science in the field of transportation planning and engineering.
- The NTUA DTPE is a Research and Innovation Center of Excellence with global recognition [Ranked 9th in Europe, 39th worldwide (Shanghai Ranking's 2017), Scientific citations: 3rd in Europe, 19th worldwide (Pulse 2017), Road Safety: 2nd in Europe, 6th worldwide (AAP, 2018)].
- A Team of 60+ Scientists: 7 Internationally recognized Professors, 15 Senior Transportation Engineers and PostDoc, 25 PhD Candidates, 15 Transportation Engineers and other scientists.
- NTUA DTPE Activities in figures (since mid 80s):
 More than 1.100 Diploma and 30 PhD Theses,
 More than 330 road safety research projects, mostly through highly competitive
 - procedures,
 - More than 1.100 scientific publications (> 400 in Journals), widely cited worldwide,
 - ➤ More than 150 scientific committees,
 - International collaborations: European Commission, UN/ECE, OECD/ITF, WHO, World Bank, EIB, CEDR, FEHRL, ERF, IRF, UITP, ETSC, WCTR, TRB, decades of Universities and Research Centers.

NTUA Road Safety Observatory

- An international reference road safety information system since 2004, with the most updated data and knowledge, with:
 - > more than 3.000 visits per month,
 - tens of items and social media posts/tweets annually

Background

Background

- Road transport is responsible for the majority of transport fatalities, with an annual 1,35 million road traffic deaths worldwide.
- Innovative data-driven solutions could contribute to a proactive approach of addressing road safety problem, which is a core principle of the Safe System.
- The rise of smartphones, sensors and connected objects offers more and more transport data.
- The interpretation of these data can be made possible thanks to progress in computing power, data science and artificial intelligence.

Need for New and Big Data

- Alternative data that could lead to new advanced road safety analyses in order to:
 - more efficiently identify key road risk factors
 - address road user behaviour and errors
 - address proactively critical traffic, infrastructure and vehicle risk factors.
- Continuous driver support with aim to improve driver behavior and develop better road safety culture at all road users.
- Great new potential for evidence based public and private road safety decision making at all levels.

Road Safety Big Data

Road Safety Big Data Sources

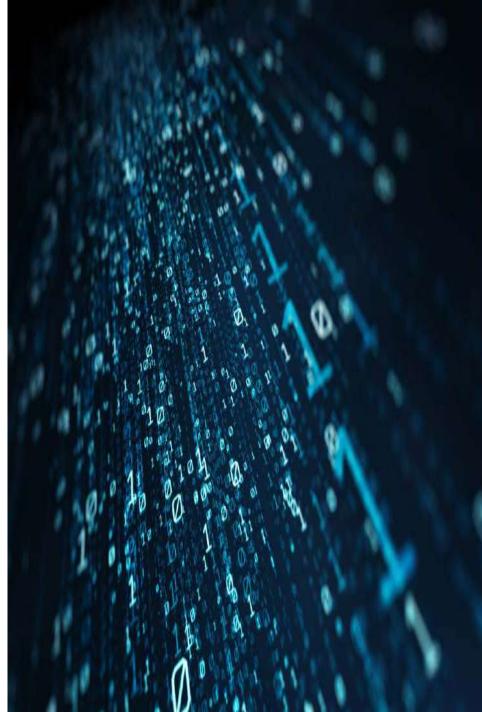
Mobile Phone Data

- Sensor Based Data (e.g. Google Maps, Waze)
- Cellular Network Data (e.g. Cosmote, Vodafone, Wind)
- Vehicle On-Board Diagnostics Data (e.g. OEM industry)
- Data from Cameras
 - On-vehicle (inside and outside)
 - On the road (cities, operators)
- Data from Car Sharing Services (e.g. Uber, Lyft, Bla bla car)
- Data from Bike Sharing Services (e.g. 8D Technologies, Mobike)
- Social Media Data
 (e.g. Facebook, Twitter)

Road Safety Big Data Sources

- Telematics companies (e.g. OSeven, ZenDrive, Octo,)
- Private Agencies' Sensor Data (e.g. INRIX, Waycare)
- Travel Cards Data (e.g. Oyster card, Opal card)
- Public Authorities Sensor Data

 (e.g. Ministries, Public Transport Authorities, Cities, Regions)
- Weather Data (e.g. AccuWeather, ClimaCell)
- Census Data


(e.g. Eurostat, National Statistics)

Road Safety Big Data

- GPS traces of the app users are the main core data elements.
- Data coming from connected navigation devices (embedded in cars, applications in smartphones etc.)
- Various sources may be combined by some companies: vehicle sensors, smartphones, PNDs, road sensors, connected cars, fleet management companies etc.
- Data related to road network, traffic parameters and speed are the most available.
- Traffic accidents may be recorded as a subgroup of recorded incidents mainly through:
 - Crowdsourcing,
 - Partnerships,
 - Algorithmically generated flow-based incidents

Accident Data Collection (1/2)

- Automatic data collection is possible through
 - instrumented floating vehicles and/or
 - smartphones (hard braking, poor road surfaces, speed).
- Active safety systems can also be considered among surrogate safety metrics, such as:
 - ABS for anti-lock braking,
 - > ESP for electronic stability control and
 - > AEB for autonomous emergency braking

Accident Data Collection (2/2)

- Technologies like automatic crash notification and event data recorders propose datadriven responses to post-crash problems.
- Street imagery, also collected by floating vehicles, supports the assessment of road safety performance (star-rating for roads).
- Drones and satellites started complement the range of data, capturing solutions and play an increasing role.

Telematics for Driver Performance Feedback

Telematics solutions

- A range of telematics solutions already exist for:
 - fleet management,
 - usage-based insurance,
 - eco-driving and
 - > safe driving coaching.
- Driver telematics were initially based on On-Board Diagnostics (OBD), having access to data from the engine control unit.
- Current technological advances make data collection and exploitation substantially easier and more accurate through Smartphones.

Telematics metrics

Smartphone and OBD driver behaviour telematics metrics:

- Mileage driven
- Road network used (through GPS position)
- Duration and time of the day driving
- Speed
- > Harsh braking
- Harsh acceleration
- Harsh cornering
- Mobile phone use (smartphone only)
- ➢ Fuel consumption
- Seat belt wearing (OBDs only)
- Drink and drive / fatigue (additional devices)
- Driver state (additional devices)

The example of OSeven Telematics

- OSeven is a pioneer technology company that is specialized in Driving Behaviour Analysis and Telematics Solutions.
- Business: Insurance (PAYD, PHYD, PAHYD), Fleet management, Rental and Leasing, Ride sharing, Taxi Hailing, Car pooling, Automotive, Banking.

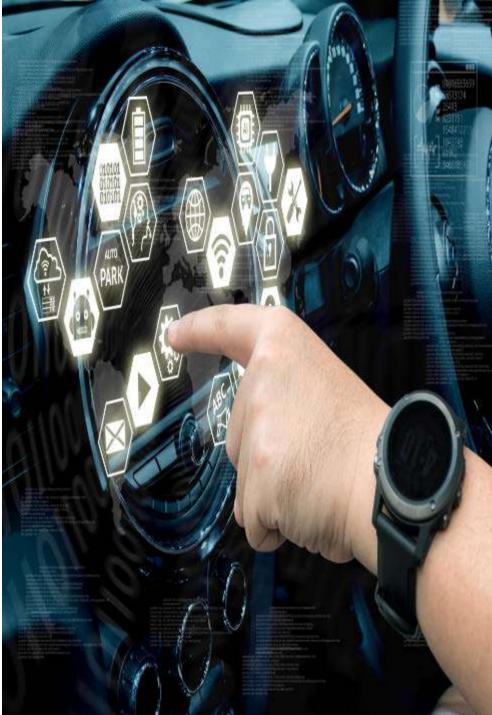
Platform components

- User-friendly smartphone apps
- > A state of the art backend infrastructure for big data analysis
- > A web app for the visualization of the metrics and scores
- Sophisticated Machine Learning algorithms
- > Driving Scoring Model for the evaluation of the driving behaviour

Data flow in OSeven Platform:

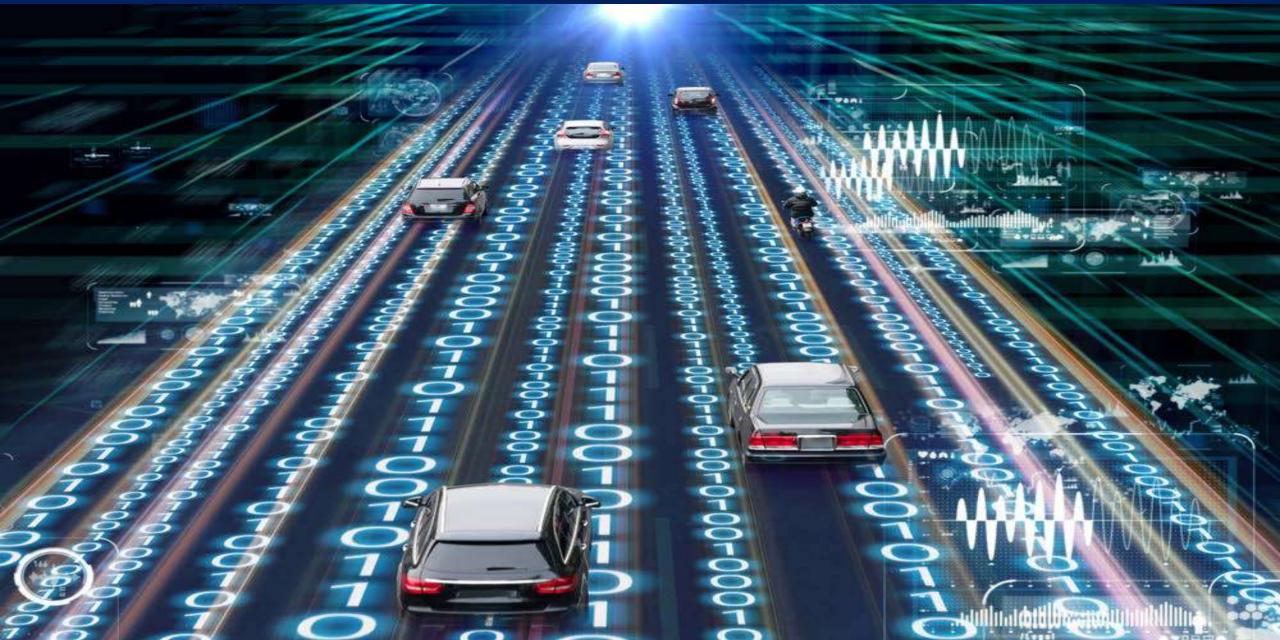
- > Mobile App detects the start and stop of driving, without any user involvement
- Data from smartphone sensors is recorded and transmitted to OSeven backend (WiFi or 3G/4G)
- > Data is analyzed via the OSeven algorithms to produce driving metrics and scores
- Results per trip and overall can be viewed by the driver in the smartphone app and by the corporate clients for their fleets in the web app
- Risk Exposure and Driving Behaviour indicators
- Unique value proposition to drivers, companies and society

Monitoring Driver Behaviour


- New vehicles can include distraction and drowsiness alerts as standard.
- Crash investigators could have access to eye tracking data through event data recorders.
- Smartphone apps developed by insurers should prevent drivers from using the phone.
- Ride-sourcing and delivery platforms sharing data on driving and riding time via the licence number for preventing gig economy sector from breaking the driving hours restrictions.

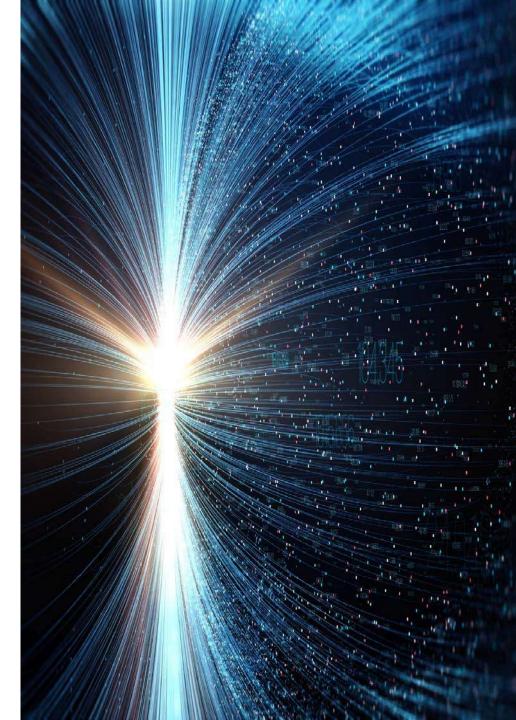
Driver Performance Telematics Feedback

- Feedback to the driver through the Driver Performance Telematics (vehicle or smartphone)
- real time feedback + avoid distraction
 - produce distraction
- safety performance star rating
 + engage in the long term
 + great motivation to improve driving behaviour
 + identification of need for re-training
 demotivation in case of non progress
 - demotivation when non favorable comparison with peers
- > The **feedback loop** should be optimized.


Data Crowdsourcing

- Cyclists and Pedestrians report:
 - safety problems (roads, behavior)
 - exposure (routes, traffic, etc.)
 - crash data (with injuries, material damage only)
 - star rating
- Not uniform nor systematic reporting practices though
- Feedback on network safety performance
 - useful for the cyclists
 - useful for the decision makers (all levels)
 - useful for business



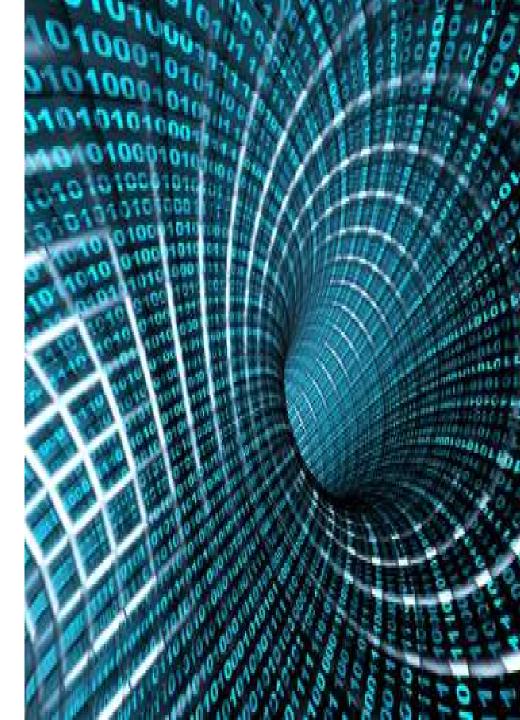


Critical Issues (1/2)

- Punishment Vs Positive Feedback (Incentives)
- Regulatory and Voluntary Data
- Secure anonymisation might increase penetration (e.g. blockchain)
- Ownership of data
- Exploitation of data (charging schemes)
- Sharing of safety data (EU legislation)

Critical Issues (2/2)

- Harmonisation and compatibility of:
 - > data
 - metrics
 - data collection methodologies
 - data processing methodologies
- Define proper and properly the KPIs
- Clean properly the data
- Linking KPIs with respective interventions
- Control in-vehicle distraction devices
- Define safety policy focus (behavior, VRUs, infrastructure, traffic)



Technology Weaknesses

- Big Data is not only prone to many of the same errors and biases in smaller data sets, it also creates new ones.
- Big data creates privacy threats, especially with the risk of re-identification of individuals in datasets.
- Hacking is an important risk requiring advanced protection measures.
- Drivers using social driving apps may be distracted by new services (navigation, coaching, C-ITS alerts, infotainment, etc.).

Privacy Protection

- Explicit guidelines should be available to stakeholders concerning the protection of personal data, but also to offer reassurance on the legality of data collection and analysis.
- The use of strong de-identification techniques, data aggregation and encryption techniques are critical.
- Issues concerning video images used for close call analysis should be addressed.

Big Data versus Big Biases

- Every data set should be considered biased towards some user groups, trip purposes or in any other dimension.
- The consequences of using data which isn't representative of the whole population should be assessed.
- There is a high risk for the drivers and the decision makers to be misled by the opportunistic analysis of seemingly low-cost data in absence of qualified data scientists and statisticians.

New Data Sharing Partnerships

- New data ownership frameworks will be developed along the lines of "A New Deal on Data".
- Partnerships enabling both the private and public sector can be created.
 - Work is required to define the scope and scale of data collection that is in line with public mandates.
- Open source or commercial solutions are developed to collect, harmonise and aggregate mobility data.
- Stakeholders should make road safety data freely available through such platforms.

Concluding Remarks

01001001010

Road Safety Technology Perspectives

- Technology can be the new road safety driver, through:
 - > Public private partnerships
 - Clear problem analyses (well defined objectives)
 - Systematic effectiveness monitoring
- Great need for:
 - more data and knowledge
 - better exploitation of current and future data
 - broader geographical coverage
- Data focus on:
 - more accurate road accident data
 - exposure data and performance indicators
 - measures and policies effectiveness evaluation

Road Safety Digitalization Perspectives

- Digitalization opens great new data possibilities for:
 - road user support and guidance
 - evidence based public and private road safety decision making at all levels
- New great potential for seamless data driven procedures from safety problems identification to selection and implementation of optimal solutions
- New increased net present value of road safety data, available for (real-time) early problem detection and prompt and customized decision support

boussias communications

Connected Cars Conference Athens, 18 September 2019

Telematics, Big Data and Road Safety

George Yannis, Professor Katerina Folla, Research Assistant Dimitrios Nikolaou, Research Assistant

Department of Transportation Planning and Engineering, National Technical University of Athens