Driving anger: Emerging issues and opportunities to advance the safety science

Panagiotis Papantoniou, George Yannis
National Technical University of Athens

Iowa, 15 October 2019
Outline

- **Background**
- **Objective**
- **Methodology**
 - Driving simulator experiment
 - Neurological assessment
 - Neuropsychological tests
 - Questionnaires
- **Analysis results**
- **Conclusions**
- **Future challenges**
Driving Anger

Driving anger

• is defined as the aggressive or angry behaviour of a driver

• includes rude gestures, verbal insults and deliberately dangerous or threatening driving

• can lead to quarrels, attacks and conflicts that cause injuries or even fatalities

Driving Anger Expression Inventory

is a widely used, valid and representative tool for measuring the expression of driving anger
Driver behaviour experiments

The following **experiment types** of assessing driving behaviour exist:

- **Driving simulator** experiments
- **Naturalistic driving** experiments
- **On road** experiments
- **Questionnaire** surveys (stated preference analysis)

- The decision regarding which experimental type to implement should be guided by the specific **research question**

- All types of experiments should carefully follow some basic **experimental design principles**, allowing for reliable analysis of the data
Objective

To investigate the **effect of anger on driver behaviour and safety** using a driving simulator experiment and self-reported questionnaires.

A driving simulator experiment was carried out within the framework of the **Distract** and the **DriverBrain** research projects by an interdisciplinary research team consisting of:

- **Neurologists** - Medical/neurological assessment
- **Neuropsychologists** - Neuropsychological assessment:
- **Transportation Engineers** - Driving at the simulator
Driving simulator experiment

Driving simulator
Foerst Driving Simulator (1/4 cab)

Road environment
- Rural: 2.1 km long, single carriageway
- Urban: 1.7 km long, dual carriageway

Traffic scenarios
- Q_L: Low traffic - 300 vehicles/hour
- Q_H: High traffic - 600 vehicles/hour

Unexpected incidents at each trial
- Child crossing the road
- Sudden appearance of an animal
Panagiotis Papantoniou,
Driving anger: Emerging issues and opportunities to advance the safety science
Experiment design

Randomization
Randomization was implemented in the order of area type, traffic scenarios as well as distraction scenarios.

Familiarization
The participant practiced in handling the simulator, keeping the lateral position of the vehicle, keeping stable speed, etc.

Sample
- 28 young drivers (18-34)
- 31 middle aged drivers (35-54)
- 36 older drivers (55+)

Panagiotis Papantoniou, Driving anger: Emerging issues and opportunities to advance the safety science
Medical Assessment

- The **Neurological assessment** concerned the administration of a full medical, clinical and neurological evaluation and taking of a detailed background history of all the participants, in order to identify the existence of disorders.

- The **neuropsychological assessment** included a detailed screening of various cognitive domains with the use of appropriate tools. The elected neuropsychological tests covered a large spectrum of cognitive functions:

<table>
<thead>
<tr>
<th>Cognitive Domain</th>
<th>Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Cognitive Status</td>
<td>Mini Mental State Examination, Montreal Cognitive Assessment test</td>
</tr>
<tr>
<td>Verbal Memory and Learning</td>
<td>The Hopkins Verbal Learning Test - Revised</td>
</tr>
<tr>
<td>Verbal Working Memory</td>
<td>Letter Number Sequencing task - Wechsler Adult Intelligence Scale-IV</td>
</tr>
<tr>
<td>Visual Scanning and Spatial</td>
<td>The Brief Visuospatial Memory Test-Revised</td>
</tr>
<tr>
<td>Memory and Learning</td>
<td>Driving Scenes Test - Neuropsychological Assessment Battery</td>
</tr>
<tr>
<td>Visuospatial Perception</td>
<td>Line Orientation Test - Repeatable Battery of Neuropsychological</td>
</tr>
<tr>
<td>Visuospatial Working Memory</td>
<td>Spatial Span Task - Wechsler Memory Scale</td>
</tr>
<tr>
<td></td>
<td>Driving Scenes Test - Neuropsychological Assessment Battery</td>
</tr>
<tr>
<td>Constructional ability</td>
<td>Clock Drawing Test</td>
</tr>
<tr>
<td>Attention/Information Processing</td>
<td>Trail Making Test - part A, Comprehensive Trail Making Test, Symbol</td>
</tr>
<tr>
<td>Speed/Perception</td>
<td>Digit Modalities Test, Useful Field of View, Witkin’s - Embedded</td>
</tr>
<tr>
<td>Selective and Divided Attention</td>
<td>Figures Test</td>
</tr>
<tr>
<td>Executive Functions</td>
<td>Frontal Assessment Battery, Trail Making Test-part B, Spatial</td>
</tr>
<tr>
<td></td>
<td>Addition Task - Wechsler Memory Scale</td>
</tr>
<tr>
<td>Psychomotor vigilance</td>
<td>Psychomotor Vigilance Test</td>
</tr>
</tbody>
</table>
Driving behaviour questionnaire

- Driving experience - car use
- Self - assessment of the older driver
- Distraction-related driving habits
- Emotions and behaviour of the driver
- Anger expression inventory during driving
- History of accidents, near misses, and traffic violations
A factor analysis was performed in order to reduce the number of independent variables related to anger. The 4 factors identified as the optimal solution are the following:

- **external anger**
- **forgiveness**
- **internal anger**
- **noble-mindedness**

Relatively high correlations appeared between the anger factors and several independent variables such as Age, Gender, Education and Driving experience.
Analysis results (2/2)

- The **multiple linear regression** method was chosen for continuous variables.
- The method used for the discrete variables was **generalized ordinal logistic regression** correspondingly.
- 5 regression models have been developed.

\[
\text{Av. Speed} = 48.9 + 2 \times (\text{Ext. Anger}) - 2.1 \times (\text{Forgiveness})
\]

\[
\text{Avg. Time Headway} = 43.8 - 5.1 \times (\text{Ext. Anger}) + 6.1 \times (\text{Forgiveness})
\]

\[
P(\text{Speed} > \text{Limit}) = \frac{1}{1 + e^{1.3 - (0.5 \times (\text{Ext. Anger}) - 0.94 \times (\text{Forgiveness}))}}
\]

\[
P(\text{Accidents} > 0) = \frac{1}{1 + e^{-1.68 - (-0.84 \times (\text{Forgiveness}))}}
\]

\[
P(\text{Ticket} > 0) = \frac{1}{1 + e^{0.59 - (0.74 \times (\text{Ext. Anger}) - 0.49 \times (\text{Noble-Mindedness}))}}
\]
Conclusions

• Driving anger is a **multidimensional phenomenon** which means that no single driving performance measure/experimental methodology can capture all effects of anger.

• The influence of driving anger on the **average speed**, the probability of **violating** the speed limit and the number of **road traffic violations** were confirmed.

• The association of anger with **driver characteristics** (age and gender) was quantified.
Future challenges

• A different **driving assessment** of the effects of anger with the use of more objective sources (e.g. police/insurance reports, in car driver monitoring in realistic conditions)

• Examination of drivers' reactions the **moment** they appear to be in anger are essential for a deeper understanding of the mechanism of anger in driving

• Investigation of **intervention strategies** to eliminate the adverse effects of anger while driving
Driving anger: Emerging issues and opportunities to advance the safety science

Panagiotis Papantoniou, George Yannis
National Technical University of Athens

Iowa, 15 October 2019