ITS and Speed Management in Europe

George Yannis, Professor, Anastasios Dragomanovits, Research Associate
Department of Transportation Planning and Engineering
National Technical University of Athens, Athens, Greece
Presentation Structure

• Introduction
• Applied ITS Speed Management Measures
• In-Vehicle Safety Systems
• Telematics
• Vehicle Automation
Speeding

- Speeding - is a highly critical issue for road safety
 - increasing accident risk and severity
 - certainly highly misunderstood by all

- Observed vehicle speeds above the speed limit in the EU are (ETSC):
 - on urban roads: 35% - 75%
 - on rural roads: 9% - 63%
 - on motorways: 23% - 59%

- 2.100 lives could be saved each year in the EU if average speed dropped by 1Km/h
Speed Management

- **Steps** of effective speed management policies (restrictive or not):
 - Step 1: Setting speed limits
 - Step 2: Informing drivers about the speed limit
 - Step 3: Road engineering measures
 - Step 4: Enforcing speed limits

- ITS applications are particularly appropriate for **Steps 2 & 4**
Speed enforcement

- **Systematic enforcement** (low fines, high nr of controls)
- **Increased perception** of enforcement
- **Driver behaviour change**
- **Lower traffic speeds**
- **Improvement of traffic safety culture**
- **Reduction of traffic accidents and casualties**

Your Road Safety is on our RADAR.
Applied ITS Speed Management Measures

- Variable Message Signs (VMS)
- Variable Speed Limit Signs (VSLS)
- Automated enforcement: Cameras
- Automated enforcement: Section control
- ADAS (Cruise Control, Intelligent Speed Adaptation)
Variable Message Signs (VMS)

• Speed management messages can be communicated through text **VMSs**.

• Commonly used to inform drivers for speed limit reductions due to **unusual conditions** ahead:
 - Workzones
 - Incidents (e.g. crash)
 - Adverse weather conditions
Variable Speed Limit Signs (VSLs)

• Variable speed limits are adjusted according to the current environmental and road conditions.

• Posted limits are usually determined through Active Traffic Management (ATM), to maximize safety and stabilize traffic flow.
Radar Speed Signs

- **Radar speed signs** are a special type of VMS that aims to slow traffic by alerting drivers of their speed.

- The *immediate and personalized feedback*, as well as the impression of *speed surveillance*, causes drivers to respond by slowing down.
Automated Speed Cameras (1/2)

• Mobile speed cameras manually controlled by traffic police are gradually supplemented by **automated (fixed) speed cameras**.

• Fixed cameras have a **larger safety effect per location**, whereas hidden mobile cameras have a larger area of influence.

• Estimated effect of fixed cameras (Elvik & Vaa, 2004; Høye, 2014): **15% - 20% crash reduction**
Automated Speed Cameras (2/2)

Barriers for fixed automated speed cameras:

• Installation **cost**.

• Politically **undesirable measure**, due to low acceptance by road users

• Violation **processing** (usually manually) can be a challenge, often resulting in dismissed violations.
Section Control

- Estimates the **average speed** over a road section, by automatically identifying each vehicle when entering and leaving.

- Estimated **effect** (Stefan, 2006; Soole et al., 2014; Høye (2014)): approximately 30% reduction in injury crashes and 45% - 80% reduction in crashes with killed or seriously injured.

- Processing **challenges** as in speed cameras.
In-vehicle Safety Systems
Revised EU Policy
Adaptive Cruise Control

- **Adaptive Cruise Control** automatically adjusts the vehicle speed to maintain a safe distance from vehicles ahead.
- Based on **sensors**: radar or laser sensor or a camera setup.
- Available by most vehicle manufacturers.
- Studies on safety impact are **inconclusive** - largely affected by set parameters (Li et al., 2017).
Intelligent Speed Adaptation (ISA)

- In-vehicle technology that identifies the speed limit, advises driver and/or limits engine power.

- Uses speed sign-recognition video camera and/or GPS-linked speed limit database.

- Types of ISA:
 - informative: giving information to the driver
 - voluntary supportive: driver can choose to set the maximum speed
 - mandatory supportive – intervenes at all times when the vehicle exceeds the speed limit
Revised General Safety Regulation

- EU institutions have recently reached a provisional political agreement on the revised **General Safety Regulation**.
- As of 2022 new safety technologies will become **mandatory in European vehicles**.
- The Commission expects that the proposed measures will help save over **25,000 lives** and avoid at least **140,000 serious injuries** by 2038.
New Mandatory Safety Features

- **Intelligent Speed Assistance** is amongst the mandatory safety features for all vehicle types, from 2022:
 - cars
 - vans
 - trucks
 - buses
Telematics & Speed Management

RADAR – Risk Assessment on Danube Area Roads
Your Road Safety is on our RADAR.

www.interreg-danube.eu/RADAR

Project co-funded by European Union funds (ERDF, IPA, ENI)
Telematics & Speed Management

- **Telematics applications** may be used extensively in the future for speed management practices.

- Speed monitoring of drivers by means of **smartphone** technology is already used to inform, notify, motivate and train the drivers.
Telematics & Speed Management

- **Incentives** for obeying the speed limits can be provided in terms of insurance cost premiums, or other approaches (e.g. social gamification)

- In the future, big data from such applications could also be used for **dynamic speed management** schemes
RADAR – Risk Assessment on Danube Area Roads
Your Road Safety is on our RADAR.

www.interreg-danube.eu/RADAR

Vehicle Automation & Speed Management
SAE Levels of Automation

0: No Automation
- Zero autonomy; the driver performs all driving tasks.

1: Driver Assistance
- Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design.

2: Partial Automation
- Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

3: Conditional Automation
- Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

4: High Automation
- The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.

5: Full Automation
- The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.
Speed Management - L4-L5 Automation

- Fully autonomous vehicles (Level 4 & 5) may eliminate the need for speed enforcement.

- They will obey the posted speed limit, or even decide on the most appropriate speed for prevalent conditions.

- The focus could be shifted from speed enforcement to the appropriate definition of the vehicle’s AI speed decision algorithm.
Connected Vehicles

• V2V and V2I communication will increase the precision and effectiveness of speed management.

• Examples of anticipated future:
 – Infrastructure communicates reduced speed limits to vehicles in case of incidents,
 – Vehicle in front informs following vehicles prior to sudden braking,
 – Platoons of connected vehicles operating in close headways increase the traffic efficiency of intersections, etc.
ITS and Speed Management in Europe

George Yannis, Professor, Anastasios Dragomanovits, Research Associate
Department of Transportation Planning and Engineering
National Technical University of Athens, Athens, Greece

RADAR – Risk Assessment on Danube Area Roads
Your Road Safety is on our RADAR.

www.interreg-danube.eu/RADAR

Project co-funded by European Union funds (ERDF, IPA, ENI)