

2nd SafetyNet Conference European Road Safety Observatory (ERSO) Road Safety Management in Action Evidence based policy setting for the European Community

Modelling road fatality trends in the European countries

C. Antoniou, E. Papadimitriou and G. Yannis National Technical University of Athens

Project co-financed by the European Commission, Directorate-General Transport & Energy

Background and motivation

- Fatality figures of the commonly available time series (e.g. 1991 onwards in CARE) show a decreasing trend in most EU countries
- Considering longer time series (e.g. 1980 onwards in Eurostat) reveals a different trend for some countries: first increase – then decrease (level of motorization?)
- If even longer time series were available (e.g. 1960 onwards), one might be able to identify these trends for all countries, in slightly different forms

Research questions

- From a road safety point of view
- Is the trend "universal"? What causes it? (we suspect rate of motorization)
- Does the trend happen at the same time in all countries? (no, why? What does this lag capture or represent?)
- Can we use this to make predictions? (for countries for which the break has not occurred yet)

Research questions

 From a statistical point of view: Structural changes in trends

Data collected

- Time series data 1960-2005
- 11 countries (AT, BE, CZ, D, NL, PL, ES, UK, GR, HU, MT) some more are expected
- Sources include CARE, SafetyNet, CARE Experts, SafetyNet partners
- Vehicle fleet by vehicle type
- Fatalities per road user type
- Population
- GDP (less complete)
- Data completeness slightly varies among countries (e.g. UK from 1960, GR and CZ from 1965, AT from 1975)
- Analysis within the proposed framework of SafetyNet data analysis methodologies.

Personal risk vs. motorization

Personal risk vs. time

Methodology

- Simultaneous estimation of regression models with unknown breakpoints
 - Breakpoints' locations
 - Slopes
- Using **R** statistical package with **segmented** package
- Number of breakpoints and initial guess for their values are assumed as input

Netherlands - Personal risk vs. motorization

Year

Personal risk (fat/100.000 pop) Data Model Ó C Õ Motorization (veh/1000 pop) Belgium – Personal risk* vs. time Personal risk (fat/100.000 pop) Data Model Õ

Belgium – Personal risk* vs. motorization

* using "killed on the spot" definition

Year

Greece - Personal risk vs. motorization

Year

Year

Motorization (veh/1000 pop)

Year

Selected countries – Personal risk vs. motorization

Time

·+·+

Observations (1)

- The explanatory variable is motorization not time
 - Time is useful in interpreting and comprehending
- Personal risk does not increase monotonically with motorization
 - Some distinct patterns can be distinguished
- Maximum personal risk (breaking point) seems to be consistent across countries
 - Around 20-25 killed/100.000 pop
- But the motorization/time range (breaking point) is wide in the countries examined :
 - Between 150 and 300 veh/1000 pop
 - Between 1965 and 1995

Observations (2)

- Different EU countries reached different motorization rates at very distant points in time
 - The modeled trends could be used to predict personal risk evolution for such countries
 - Predicting/expecting breakpoints can improve understanding of ongoing trends
 - Developing and third-world countries have not yet reached these motorization rates
- Macroscopic analysis of expected national/ regional risk trends
 - Enabling comparisons
 - Providing insight into the trends, similarities and differences

Observations (3)

- Personal risk depends on many exogenous factors, affecting (and obscuring) the underlying relationship, including social events and financial trends
 - Evidenced also by breakpoints without sudden motorization changes
 - Using the parsimonious vs. using the more detailed representation
- Personal risk at the national level depends highly on the measures, programmes and strategies implemented as well as on the overall road safety culture

Conclusions (1)

- Similar risk vs. motorization trends are observed in EU countries
 - Similar maximum personal risk
 - At different times and
 - Motorization levels
- Breakpoint estimation and analysis can help in:
 - Exploring underlying structural changes
 - Prediction of break-points for other countries
- Need to develop further insight into other contributing factors and extend the model
 - Functional form
 - Explanatory variables

Conclusions (2)

- It is interesting to compare a country's performance with the expected average performance for its current level of motorisation, identifying thus the best performing countries
- Demonstration of the practical value and application of SafetyNet data
- More data and further refinement of methodologies are needed to support further analysis

Further research

- Analysis of structure of trends for all EU countries
- Systematic identification of groups, capturing countries with similar trends
- Interpretation of patterns and prediction of trends for countries "behind the breakpoint"

2nd SafetyNet Conference European Road Safety Observatory (ERSO) Road Safety Management in Action Evidence based policy setting for the European Community

Modelling road fatality trends in the European countries

C. Antoniou, E. Papadimitriou and G. Yannis National Technical University of Athens

Project co-financed by the European Commission, Directorate-General Transport & Energy

