Executive Seminar: Speed and Speed Management in Road Safety Policy
08 October 2020

Measuring Speeds

George Yannis, Professor NTUA
Department of Transportation Planning and Engineering, National Technical University of Athens
Presentation Outline

1. Introduction
2. Why, What, When, Where and How to Measure
3. Data supported Measures against speeding
4. Future Challenges
Introduction
Speed – The major crash cause

Speed affects:
- the risk of being involved in an accident,
- the severity of an accident

"The higher the speed, the higher the accident risk and the more severe the accident consequences"

- Speed has been found to be a major contributory factor in around:
 - 10% of all accidents and
 - 30% of the fatal accidents
Speed Perception

- Both the Authorities and the road users underestimate largely the role of speed in road accidents
- Focus is given on positive effects of speed on travel time instead of its negative effects on safety and environment

- In road safety we work mostly in blind, as we have very little knowledge about the frequency of speeding and its real role on accident occurrence and severity

- Thus, road traffic safety measures are largely under-designed and even less accepted by the population
Need for Speed Monitoring

- Absence of *speeding monitoring* and accountability (both by the users and the Authorities) limits seriously road safety performance

- Decision making in road safety management is highly dependent on appropriate and *quality data*

- Different *purposes of speed data collection* imply different data and hence different methods of collection
Why, What, When, Where and How to Measure
Speed measuring techniques (1/3)

Fixed cameras
- The method involves recording the distance moved by a vehicle in a short period, then computing the speed.

Mobile cameras
- They may be hand-held, tripod mounted, or vehicle-mounted.
- Laser Guns are also included, which rely on the measurement of the round-trip time of the infrared light beam to reach a vehicle and be reflected back.
- Fixed cameras have a larger safety effect per location, whereas hidden mobile cameras have a larger area of influence.
Speed measuring techniques (2/3)

Traffic counts
- Measures the passage time of a vehicle between two detectors, a measured distance apart.
- Detectors can be pairs of pneumatic tubes, tribo- and piezo-electric cables, switch tapes, inductive loops and photo-electric or electro-magnetic beams, but also traffic cameras.

Section control
- Estimates the average speed over a road section, by automatically identifying each vehicle when entering and leaving.
Speed measuring techniques (3/3)

Smartphones / OBD
- Sensors on smartphones and/or vehicles are fitted with receiver units that pick up signals from the Global Positioning System (GPS) satellite network.

In-depth investigation
- Vehicle crash profile measurements for calculating crash energy and speed change at impact.
- Among data collected on the site of accident are initial speed and collision speed

Driver perception/attitudes
- Acceptability of driving over the speed limits
- Self-declared speeding
Speed measurement types

- Vehicle speed: The instantaneous speed of the vehicle

- Average speed of vehicle(s) at a specific point in time
 - on a road axis
 - at a network

- Average speed of vehicles over time:
 - by road type
 - by area type

- Traffic Police collects data on speeding from enforcement controls
- Data on speeding from sample counts are collected for the estimation of Speeding KPIs
Data Sampling

- **Sampling - Road type**
 (Urban, Interurban, Motorways)

- **Sampling - Traffic conditions**
 (junctions or not, weather conditions, week/weekend days, day/night)

- **Sampling - Vehicle type**
 (Passenger cars, Motorcycles, Trucks, Cycles (incl. e-scooters and e-cycles))

- **Sampling - Driver type**
 (Driver Age, Driver Gender, Distraction, Drink-and-drive, trip purpose)
Data supported Measures against speeding
Data for policy making support

- **Policy making support** by identifying properly the problem and taking prompt and customized measures

- **Measures** include road design, engineering measures, legislative initiatives, etc.
 - by Road Authorities (public and private)
 - by Ministries of Transport, Health, Education
The example of reducing speed limits in France

- Reduction of speed limits on rural roads from 90 km/h to 80 km/h since 01/07/2018

- Detailed data comparisons and analyses (crashes, exposure, speeding) led to significant conclusions:
 - Fatalities on rural roads decreased, while fatalities on the remaining road network increased
 - Overall road safety performance on rural roads improved more compared to the remaining road network
Predicting & benchmarking network’s risk

- Future short- and long-term predictions in time and space using spatial econometric models
 - e.g. Spatial error model, Spatial durbin model

- Benchmarking and efficiency measurement of road risk using benchmarking techniques (e.g. stochastic frontier analysis and data envelopment analysis)
 - for all existing levels (micro/ meso/ macro)
 - for all different dimensions (time/ space)
Analysis and feedback on driver speeding

- Continuous **driver support** with aim to improve driver behavior and develop better road safety culture at all road users

- Real-time collection from smartphone sensors and processing of speeding data to create **microscopic driving behaviour metrics and KPIs** to be used in:
 - Clustering algorithms for driving pattern identification
 - Classification techniques for pattern recognition of the dynamic driving behavior

- Develop **recommendation systems algorithms** to provide feedback to drivers on their behaviour
 - e.g. Knowledge graphs per trip, at all trips, etc.
Measuring driver behaviour – BeSmart project

- Assessment and improvement of *speeding behaviour* and safety of drivers in every day trips

- Development of measures by means of *smartphone applications* and a *web-platform*, allowing to inform, notify, motivate and train the drivers

- Personalised *speeding feedback* is communicated to drivers, allowing them to identify their critical deficits or unsafe behaviours

- Between the two phases of the experiment, *speeding by car drivers* was reduced by 28.39%

More info at: https://besmart-project.gr/
Data for enforcement and campaigns

- **Enforcement**
 - Design of an efficient road traffic enforcement plan with specific targets
 - Consideration of targeted groups of road users
 - Choice of enforcement operations location and time
 - Set-up and execution of police checks

- **Publicity campaigns**
 - Speed awareness campaigns by public and private organizations
 - Focused on specific driver groups or aiming at their social surroundings
 - Campaigns are more effective when combined with enforcement
Data for the vehicle industry

- **In-vehicle technology** identifies speed limits, advises driver and/or limits engine power

- **Types of Intelligent Speed Adaptation (ISA):**
 - informative: giving information to the driver
 - voluntary supportive: driver can choose to set the maximum speed
 - mandatory supportive – intervenes at all times when the vehicle exceeds the speed limit

- New technologies are also based on the possibilities of **vehicle-roadside communication**

- **Dynamic speed limits** take account of the real time traffic, road and weather conditions, reflecting better the safe speed
Future Challenges
Future Perspectives

- Speed is **highly misunderstood** by all and this must change.

- There is great need for:
 - more data and knowledge
 - better exploitation of current and future data
 - broader geographical coverage

- Data **focus** on:
 - more accurate road accident data
 - exposure data and performance indicators
 - measures and policies effectiveness evaluation
Road Safety Technology Perspectives

- **Digitalization** (AI, ML, etc.) opens great new data possibilities for more efficient speed management:
 - road user support and guidance
 - evidence based public and private road safety decision making at all levels

- New great potential for seamless **data driven procedures** from safety problems identification to selection and implementation of optimal solutions

- New increased **net present value of road safety data**, available for (real-time) early problem detection and prompt and customized decision support
Measuring Speeds

George Yannis,
Professor NTUA

Department of Transportation Planning and Engineering,
National Technical University of Athens