

05>09 OCTOBER 2020 12>16 OCTOBER 2020 19>22 OCTOBER 2020

Wednesday, October 14 2020

Network-wide Road Safety Assessment

George Yannis, Professor NTUA

Department of Transportation Planning and Engineering, National Technical University of Athens

Outline

1. Methods to Assess Road Safety

- Accident occurrence
- "In-built" safety assessment

2. Network-level Safety Assessment

- Methods, manuals, and tools
- Applied practices in Europe
- Considerations for automated vehicles

3. Conclusions

Methods to Assess Road Safety

- Accident occurrence: Identification of sections with high accident frequency – reactive approach
- "In-built" safety assessment: Consideration of roadway design characteristics to assess road safety – detailed proactive approach
- Network-wide safety assessment: Consideration of the in-built safety of an entire road network – *large scale proactive* approach

Methods to Assess Road Safety: Accident Occurrence

Collection of:

- Macroscopic data: recorded by the police and consists of 50-100 variables associated with the accident
- Microscopic data: collected by research institutes, hospitals, insurance companies, private companies and authorities and consists of >500 variables associated with the accident
- It is critical that these data are of good quality and consistently recorded.

Methods to Assess Road Safety: "In-built" Safety

- Statistical mathematical models predicting the expected average accident frequency at the examined locations, as a function of traffic volume and road infrastructure characteristics (e.g. number of lanes, type of median, traffic control)
 - AASHTO Highway Safety Manual Safety Performance Functions and Crash Modification Factors
 - > PRACT models
- Road Safety Audits or Road Inspections

Need for Network-level Safety Assessment

While detailed proactive approaches (SPFs, road safety audits and/or inspections) are the most effective ways to identify hazardous locations and thus, improve road safety, they are time- and resource-consuming methods.

On the other hand, **network-level safety assessment** provides an assessment of the **broader road network** and can identify those parts of the network that are in urgent need of improvement. This way, road safety-related resources are **allocated more effectively**.

Need for Network-level Safety Assessment: Pro- or Re-active?

Generally in life, it is better to be proactive than reactive; being *reactive* means that *lives will be lost* before action is taken.

Proactive approaches that consider the geometric, operational, and traffic characteristics are applicable for:

≻ New roads

Countries where no reliable and accurate accident data are available

Combination of proactive and reactive approaches: Expansion of the network-level safety assessment framework to focus on locations with high accident concentration

Applied Network-level Safety Assessment Methods & Tools

EU-based and applied methodologies

- iRAP/EuroRAP protocols
- PRACT Project Models (CEDR)
- ETSC PIN ratings
- National German methodology (ESN)
- Work-related safety ratings in Sweden
- ECF ECS (European Certification standard)

International methodologies

- ➢ iRAP protocols
- World Bank road assessment methodology
- US Highway Safety Manual Predictive Method & IHSDM softwar
- Australian Road Safety Engineering Toolkit & ANRAM software

George Yannis, Professor NTUA – October 2020

Europe and Network-level Safety Assessment

Initiatives in several European Countries regarding network-level safety assessment involve the use of **iRAP protocols**. Some other applied practices are:

- Germany: use of maintenance-related approach on network-wide safety assessment
- Ireland: follows an extensive Road Safety Inspection process enhanced by the PRACT models
- Sweden: applies a qualitative road safety classification approach based on speed limits and geometric characteristics

NWRSA and Automation

- Systematic network-level safety assessment can be proved highly beneficial to monitor the impact of gradual deployment of automation to the changing road safety performance.
- ➤ The transition to automated / connected vehicles will allow for more effective ways of implementing proactive safety approaches, and thus network-level safety assessment, due to their ability to collect multiple types of road data. Specifically:
 - Vehicle kinematic data (e.g., speed, acceleration) that can be used instead of accident data
 - Maintenance-related data (e.g., marking and signs reflectivity and pavement quality) that can inform authorities for maintenance needs

Conclusion

Existing methods and practices rely on different assumptions and data and may produce output not always comparable

➤A new, integrated methodology that combines the advantages of proactive (in-built safety) and reactive (accidence occurrence) methods to assess road safety and rank road networks is needed

➤The methodology should achieve a balance between being accurate and detailed on one hand, without being overly data intensive and cumbersome in its implementation

05>09 OCTOBER 2020 12>16 OCTOBER 2020 19>22 OCTOBER 2020

Wednesday, October 14 2020

Network-wide Road Safety Assessment

George Yannis, Professor NTUA

Department of Transportation Planning and Engineering, National Technical University of Athens