

SUSTAINABLE CITIES Viewpoints of the Pioneer Alliance IoT for Smart Cities School Open session 21 October 2020

New Data for Urban Road Safety

George Yannis, Professor **Katerina Folla**, Researcher

Department of Transportation Planning and Engineering, National Technical University of Athens

Presentation Outline

- 1. Background
- 2. Need for new and big data
- 3. Urban road safety big data
- 4. Accident data collection
- 5. Intelligent Transport Systems
- 6. Telematics
- 7. VRU Data Crowdsourcing
- 8. Critical Issues
- 9. Conclusions

Background

- Road transport is responsible for the majority of transport fatalities, with 1,35 million fatalities worldwide each year.
- In 2019, about 22.800 road traffic fatalities were recorded in the 27 EU Member States.
 - > Almost 40% of road fatalities occur in urban areas.
 - Vulnerable road users account for 70% of road deaths in urban areas.
- Innovative data-driven solutions could contribute to a proactive approach of addressing urban road safety problems, being a core principle of the Safe System.
- The rise of smartphones, sensors and connected objects offers more and more transport data.
- The interpretation of these data can be made possible thanks to progress in computing power, data science and artificial intelligence.

Need for New and Big Data

Alternative data that could lead to new advanced road safety analyses in order to:

- > more efficiently identify key road risk factors
- ➤ address road user behaviour and errors
- address proactively critical traffic, infrastructure and vehicle risk factors.
- Continuous driver support with aim to improve driver behavior and develop better road safety culture at all road users.
- Great new potential for evidence based public and private road safety decision making at all levels.

Urban Road Safety Big Data (1/2)

- Mobile Phone Data
 - Sensor Based Data (e.g. Google Maps, Waze)
 - Cellular Network Data (e.g. Cosmote, Vodafone, Wind)
- Vehicle On-Board Diagnostics Data (e.g. OEM industry)
- Data from Cameras
 - On-vehicle (inside and outside)
 - On the road (cities, operators)
- Data from Car Sharing Services (e.g. Uber, Lyft, Bla bla car)
- Data from Bike Sharing Services (e.g. 8D Technologies, Mobike)
- Social Media Data (e.g. Facebook, Twitter)

Urban Road Safety Big Data (2/2)

- Telematics companies (e.g. OSeven, ZenDrive, Octo)
- Private Agencies' Sensor Data (e.g. INRIX, Waycare)
- Travel Cards Data (e.g. Oyster card, Opal card)
- Public Authorities Sensor Data
 (e.g. Ministries, Public Transport Authorities, Cities, Regions)
- Weather Data

 (e.g. AccuWeather, ClimaCell)
- Census Data
 (e.g. Eurostat, National Statistics)

Accident Data Collection (1/2)

- Automatic data collection is possible through
 - instrumented floating vehicles and/or
 - smartphones (hard braking, poor road surfaces, speed).
- Active safety systems can also be considered among surrogate safety metrics, such as:
 ABS for anti-lock braking,
 - ESP for electronic stability control and
 - ESP for electronic stability control and > AEB for autonomous omorgoncy braking
 - AEB for autonomous emergency braking

Accident Data Collection (2/2)

- Technologies like automatic crash notification and event data recorders propose data-driven responses to postcrash problems.
- Street imagery, also collected by floating vehicles, supports the assessment of road safety performance (star-rating for roads).
- Drones and satellites complement the range of data, capture solutions and play an increasing role.

Intelligent Transport Systems

- Urban infrastructure based systems:
 - Speed management system,
 - > Dynamic traffic management and hazard warning systems,
 - Automated enforcement of traffic rules etc.
- Cooperative systems, which use both infrastructure and vehicles with appropriate communication links:
 - Intelligent Speed Adaptation (ISA),
 - ➤ Ecall,
 - Adaptive Cruise Control,
 - Collision avoidance systems at junctions etc.
- Urban infrastructure design for the better coexistence of vehicles (Autonomous, Connected, Electric) with vulnerable road users:
 - Smart street signs
 - Smart pedestrian crossing
 - Electric roads
 - Smart pavement with sensors

Telematics (1/2)

- A range of telematics solutions already exist for:
 - fleet management,
 - usage-based insurance,
 - eco-driving and
 - > safe driving coaching.
- Smartphones are becoming increasingly popular in those applications.
- Current technological advances make data collection and exploitation substantially easier and more accurate through mobile phones.

Telematics (2/2)

- Feedback to the driver through the Driver Performance Telematics (vehicle or smartphone)
- Real time feedback
 + avoid distraction
 produce distraction
 - produce distraction
- Safety performance star rating
 + engage in the long term
 - + great motivation to improve driving behaviour
 - + identification of need for re-training
 - demotivation in case of non progress
 - demotivation when non favorable comparison with peers
 - The feedback loop should be optimized.

VRU Data Crowdsourcing

- Cyclists and Pedestrians report:
 - safety problems (roads, behavior)
 - exposure (routes, traffic, etc.)
 - crash data (with injuries, material damage only)
 - star rating.
- Not uniform nor systematic reporting practices though.
- Feedback on network safety performance
 - useful for the cyclists
 - useful for the decision makers (all levels)
 - useful for business

Critical Issues

- Punishment Vs Positive Feedback (Incentives)
- Regulatory and Voluntary Data
- Secure anonymisation might increase penetration (e.g. blockchain)
- Ownership of data
- Exploitation of data (charging schemes)
- Sharing of safety data (EU legislation)
- Harmonisation and compatibility of:
 - > data
 - metrics
 - data collection methodologies
 - data processing methodologies

Conclusions

- Digitalization opens great new data possibilities for:
 - road user support and guidance
 - evidence based public and private road safety decision making at all levels
 - support smart cities applications
- New great potential for seamless data driven procedures from safety problems identification to selection and implementation of optimal solutions
- New increased net present value of road safety data, available for (real-time) early problem detection and prompt and customized decision support

SUSTAINABLE CITIES Viewpoints of the Pioneer Alliance IoT for Smart Cities School Open session 21 October 2020

New Data for Urban Road Safety

George Yannis, Professor **Katerina Folla**, Researcher

Department of Transportation Planning and Engineering, National Technical University of Athens