

ECTRI TG Safety Meeting 30 November 2020

Assessing the impact of personalized feedback on driving and riding behavior through a smartphone application

George Yannis, Armira Kontaxi, Apostolos Ziakopoulos

Department of Transportation Planning and Engineering, National Technical University of Athens

Introduction

- Accurate monitoring of driver behavior has scientific and technical requirements
- ➤The Internet of Things (IoT) constantly offers new opportunities and features to monitor and analyze driver behavior through:
 - Wide use of smartphones and social media
 - Effective data collection and handling
 - Big Data Analysis

The BeSmart project

Project partners:

- National Technical University of Athens, Department of Transportation Planning and Engineering <u>www.nrso.ntua.gr</u>
- OSeven Telematics <u>www.oseven.io</u>

Duration of the project:

• 36 months (July 2018 – July 2021)

>Operational Program:

 "Competitiveness, Entrepreneurship and Innovation" (EPAnEK) of the National Strategic Reference Framework (NSRF)

The BeSmart Objectives

>The objectives of the project:

- Development of an innovative and seamless Internet of Things application
- Assessment and improvement of behavior and safety of all drivers (car drivers, powered two-wheelers, cyclists, professional drivers) along multi-modal trips
- Organization and exploitation of a naturalistic driving experiment of 200 drivers for 12 months

Research Scope

- Identification of the critical driving parameters that affect speeding behavior using data from:
 - Smartphone devices
 - Naturalistic driving experiment
- Investigation of the impact of driver feedback on driving behavior as expressed by the exceedance of speed limits

The BeSmart driving experiment

- ➤The experiment consists of 6 different phases differing in the type of feedback provided to drivers
- ➤The present study refers to the first two phases (car drivers – PTW riders):
 - Phase 1 no feedback to drivers 12 weeks duration
 - Phase 2 personalized feedback in means of a trip list and a scorecard regarding drivers' behavior - 10 weeks duration
- A total of 26,619 trips from a sample of 147 car drivers and 3,853 trips from 20 motorcyclists

The BeSmart Application

Driving behavior characteristics

- Speeding
- Harsh braking/ acceleration/ cornering
- Mobile phone use (car drivers' application)

Travel behavior characteristics

- Total distance
- Road network type
- Risky hours driving
- Vehicle type

Smartphone data collection (1/2)

- A mobile application to record user's driving behavior (automatic start / stop)
- ➤A variety of APIs is used to read mobile phone sensor data
- Data is transmitted from the mobile App to the central database
- Data are stored in a sophisticated database where they are managed and processed

Smartphone data collection (2/2)

>Indicators are designed using:

- machine learning algorithms
- big data mining techniques

>The database analyzed was in .csv format

• Drivers' trips are stored per row, the characteristics of which are stored in each column's variables

State-of-the-art technologies and procedures in compliance with standing Greek and European personal data protection laws (GDPR)

Descriptive statistics – car drivers

Both types of harsh events (accelerations and brakings) are reduced in the 2nd phase of the experiment

The percentage of driving above the speed limits and driving while distracted by the mobile phone is reduced in the 2nd phase of the experiment

Descriptive statistics – PTW riders

Both types of harsh events (accelerations and brakings) are reduced in the 2nd phase of the experiment

The percentage of driving above the speed limits is reduced in the 2nd phase of the experiment

Driving behaviour feedback through a smartphone application – November 2020

Theoretical Background

➤Selection of statistical method:

- Need for fraction prediction percentage of speeding time
- Generalized Linear Models (GLM) Poisson Regression
- Introduce random effects to capture different driving behaviors and extend GLMs as Generalized Linear Mixed-Effects Models (GLMMs), given by the following formula:

$$log(\lambda_i) = \beta_{0i} + \beta_{ji}x_{ji} + \beta_{n-1}x_{n-1} + \varepsilon$$

Results (1/2) – car drivers

GLMMs for the percentage of driving time above the speed limit

Trip Parameter	Estimate	s.e.	p-value	Sig.	Rel. Risk Ratio
Intercept	1.702	0.0614	<0.001	***	5.485
Exp. phase (0=no feedback, 1=feedback)	-0.392	0.006	<0.001	***	0.675
Total trip duration (s)	0.204	0.036	<0.001	***	1.226
Number of harsh accel. per trip (count)	0.161	0.002	<0.001	***	1.175
Trip distance during risky hours [22:00- 05:00]	0.029	0.001	<0.001	***	1.029
Morning peak hour [06:00-10:00] (0=yes, 1=no)	0.027	0.008	<0.001	***	1.027
Afternoon peak hour [16:00-20:00] (0=yes, 1=no)	-0.236	0.007	<0.001	***	0.790

Results (2/2) – PTW riders

GLMMs for the percentage of driving time above the speed limit

Trip Parameter	Estimate	s.e.	p-value	Sig.	Rel. Risk Ratio
Intercept	1.898	0.276	<0.001	***	6.672
Exp. phase (0=no feedback, 1=feedback)	-0.145	0.013	<0.001	***	0.865
Total trip duration (s)	0.194	0.095	0.042	*	1.214
Number of harsh accel. per trip (count)	0.248	0.005	<0.001	***	1.281
Trip distance during risky hours [22:00- 05:00]	0.018	0.003	<0.001	***	1.018
Morning peak hour [06:00-10:00] (0=yes, 1=no)	0.067	0.015	<0.001	***	1.069
Afternoon peak hour [16:00-20:00] (0=yes, 1=no)	-0.286	0.015	<0.001	***	0.751

Conclusions (1/2)

- Both car drivers and PTW riders indicate similar behavior while exceeding the speed limits
- ➤ Trip length and driving during the morning rush and night-time risky hours are exposure metrics positively correlated with the odds of speeding
- ➤Harsh accelerations are also associated with the odds of someone exceeding the speed limits, outlining a pattern of an overall unsafe driving behavior

Conclusions (2/2)

➤The present results capture and quantify the positive effects of driver feedback on one of the most important human risk factors; speeding

- The ultimate objective when providing feedback to drivers is to:
 - Trigger their learning and self-assessment process, thus enabling them to gradually improve their performance
 - Monitor the **shift of driving behaviour** as the application provides feedback

Future research

- Investigating the impact of different types of personalized feedback communicated through the project application:
 - Incentives within a social gamification scheme, with personalized target setting,
 - Benchmarking and comparison with peers
- Examinations of the impact of feedback over time, the influence of its evolution on drivers and its consistency
- Microscopic data analysis of the collected database through machine learning techniques

ECTRI TG Safety Meeting 30 November 2020

Assessing the impact of personalized feedback on driving and riding behavior through a smartphone application

George Yannis, Armira Kontaxi, Apostolos Ziakopoulos

Department of Transportation Planning and Engineering, National Technical University of Athens

