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Spatial analysis of harsh event frequencies 

(harsh brakings/accelerations) in road segments

1. How can high-resolution naturalistic driving smartphone data 

and road segment geometric and road network characteristic data 

be combined (map-matched) and examined in road safety 

investigations?

2. How can harsh event frequencies be analyzed spatially in urban 

networks?

3. Which road geometry and road network characteristics affect 

harsh event frequencies in urban road network environments? 

4. How transferable are the previous results in a different study 

area? Can reliable predictions be conducted?

Research scope and questions
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Harsh events: harsh brakings and harsh accelerations recorded by smartphone 

sensors for telematics-based vehicle insurance primes

• Parameters measuring road safety levels 

(correlations with spatial and temporal headways)

• Inherently linked with driver risk (Tselentis et al, 2017)

• Different phenomena, correlations with different variables 

(Ziakopoulos et al, 2020)

Considerable comparative advantages for their investigation:

1. Applications in driver evaluation and classification 

(Bonsall et al., 2005; Gündüz et al., 2018).

2. Proactive road safety indicators anticipating safety-critical events (Zohar et 

al., 2014; Jansen & Wesseling, 2018); evaluations before crashes occur

3. Non-aggressive driving reduces emissions by up to 40% (Alessandrini, 2012)

4. Investigated by the insurance industry (Paefgen et al., 2012; 2014)

5. Apparent research gaps in the investigation of harsh event frequencies

Merits of harsh event examination
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Data of road segment geometry and road network 

characteristics on a microscopic level from digital maps

OpenStreetMap: Open source digital map platform
Hierarchical elements:

1. Nodes

2. Ways from node groups

3. Relations from node and way groups

Obtaining a wealth of data in WGS84 through API queries

(Overpass Turbo API through Overpass Query Language)

NASA SRTM topography

Altitude data provided by NASA:
• Freely available

• Altitude resolution per 10 cm – compared with OSM altitudes for verification – some accuracy issues

• Majority of populated areas available

Data collection (1/2): Digital map road geometry data
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Naturalistic driving data from real-world conditions 

obtained from smartphones (per trip-second), primarily 

recorded for telematics-based vehicle insurance primes

Utilization of the application/platform of OSeven Telematics

• ΑPIs utilization for data reading from smartphone sensors

• Exploited sensors: GPS, accelerometer, gyroscope, device orientation

• Transmission from smartphone to central storage database

• Data cleaning and processing via a series of Machine Learning (ML) 

algorithms

• Several data are provided, indicatively: trip position, speed, 

acceleration, harsh brakings/accelerations, event intensity, speeding, 

mobile phone use

• Total anonymity during all data handling phases (GDPR)

High resolution big data from driver trips including behaviour

indicators

Data collection (2/2): Naturalistic driving data from smartphones
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Source: OSeven Telematics, (2020)

https://oseven.io/


6

Calculation of geometric characteristics based on 

OSM node coordinates

Roadway segment length
• Calculation based on modern geoids/ellipsoid models through 

available libraries

• Sum of elementary lengths (2 nodes each)

Determination of road segment centroids

Gradient
• Sum of elementary gradients (2 nodes each)

• Road segment average, weighted by elementary lengths

Curvature
• Menger’s formula per elementary triangle (3 nodes each)

• Road segment average, weighted by elementary lengths

Data processing: Geometric characteristics (1/2)
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Data processing: Geometric characteristics (2/2)
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Neighborhood complexity calculation
• Measurement of density and complexity of immediate road segment 

environment: (i) in reality (ii) on the digital maps

• Logarithm of nodes within a window of 470m * 470m from each road 

segment centroid 

Obtaining of additional road segment characteristics from OSM:

1. Presence of pedestrian crossing

2. Presence of traffic lights

3. Lane number

4. Road type 

(exclusion of walkways/footpaths/surfaces without vehicles)

5. Direction number (one-way or two-way)

Calculation with original purpose-made algorithms and sub-routines 

created in R-studio, iteratively for each road segment
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Data processing: Map-matching (1/2)
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Map-matching: Plotting of naturalistic driving data on maps 

after determination of the corresponding segment

Matching of GPS trace to each road segment per second

Identification of:
1. Nearest node (point-to-point distance)

2. Minimum distance way – MDW (point-to-polyline distance)

• Moving polygon serving to reduce candidate ways

• Time-consuming and computationally demanding process

• Corrections are essential in dense road segments with parallel 

axes through a specialized vote-count algorithm

Recording and assignment per road segment:
1. Pass count

2. Harsh brakings/accelerations

3. Speeding seconds

4. Mobile use seconds
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Data processing: Map-matching (2/2)
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Sample description (1/2) – Chalandri urban road network
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869 road segments (removal of 14 footways) 

with 4293 nodes
• 49 road segments with traffic lights

• 80 road segments with pedestrian crossings

Naturalistic driving data:
• Trips between 01-10-2019 & 29-11-2019 – 2 months

• A total of 3294 trips from 230 drivers

• 1,000,273 driving seconds: average trip duration 304 s

• 1348 harsh brakings

• 921 harsh accelerations

90% of road segments feature at least 1 trip

Variable distributions

• Positive skewness (larger right tails) 

• High kurtosis (non-normal distributions)
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Sample description (2/2) – Omonoia urban road network
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1237 road segments (removal of 78 footways) 

with 6115 nodes
• 319 road segments with traffic lights

• 317 road segments with pedestrian crossings

Naturalistic driving data:
• Trips between 01-10-2019 & 29-11-2019 – 2 months

• A total of 2615 trips from 257 drivers

• 964,693 driving seconds: average trip duration 369 s

• 1036 harsh brakings

• 938 harsh accelerations

86% of road segments feature at least 1 trip

Variable distributions

• Positive skewness (larger right tails) 

• High kurtosis (non-normal distributions)
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Integration of spatial heterogeneity

Event frequencies: Log-normal Poisson framework

1. Geographically Weighted Poisson Regression (GWPR)
• Frequentist functional models: local micro-regressions are conducted, 

b coefficients can vary locally

2. Conditional Autoregressive Prior Regression (CAR)
• Bayesian functional models: Bayesian regressions are conducted with 

spatially structured and unstructured terms, b coefficient distributions 

are obtained

3. Extreme Gradient Boosting (XGBoost) –AI methods
• Machine learning: Multiple additive regression trees (ensemble), 

obtained information regarding variable contribution (gain)

• Random Cross-Validation – RCV

• Spatial Cross-Validation – SPCV

Arsenal of spatial statistical & ML models
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Source: Lovelace et al. (2019)
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Harsh braking spatial analyses in urban road networks
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Independent variables
GWPR CAR RCV XGBoost SPCV XGBoost

Coefficients Mean posterior values Gain values Gain values

Intercept 0.4636 -1.4134 N/A N/A

Gradient -2.4864 -9.7538 0.0806 0.0860

Curvature ― ― 0.0444 0.0626

Neighborhood complexity -0.2919 -0.1787 0.0344 0.0684

Segment length 0.0039 0.0075 0.1436 0.1400

Pass count 0.0040 0.0086 0.6788 0.6271

Traffic lights: Yes [Ref.: Traffic lights: No] 0.2563 -0.0902 0.0037 0.0010

Pedestrian crossing: Yes [Ref.: Pedestrian crossing: No] -0.1463 0.3820 0.0024 0.0024

Lanes: 2 [Ref.: Lanes: 1] -0.2435 -0.1713

0.0072 0.0048Lanes: 3 [Ref.: Lanes: 1] 0.3669 -0.5719

Lanes: 4 [Ref.: Lanes: 1] 0.3578 1.9169

Road type: secondary [Ref.: Road type: primary] 1.0520 -0.1094

0.0049 0.0078Road type: tertiary [Ref.: Road type: primary] -0.0070 -1.6389

Road type: residential [Ref.: Road type: primary] -1.0084 -2.5578

Sigma-phi2 
[Spatially structured effects] N/A 700.3172 N/A N/A

Sigma-theta2 
[Spatially unstructured effects] N/A 2.3455 N/A N/A

Performance metrics

RMSE 3.2954 1.2830 1.4215 1.8293

MAE 1.3048 0.4115 0.4971 0.4994

RMSLE 0.5569 0.1727 0.3140 0.2390

CA 80.90% 96.32% 90.56% 91.71%

Positive correlation:

Segment length

Pass count

Negative correlation:

Gradient

Neighborhood complexity

Road type [Residential]

Marginally positive correlation:

Road type [Secondary]

Traffic lights

Pedestrian crossing

Marginally negative correlation:

Road type [Tertiary]
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Harsh braking prediction & transferability
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Predictions οn Omonoia test area

1. Geographically Weighted Poisson Regression (GWPR)
• Local b-coefficient fluctuations are not transferable

• Predictions using global Poisson regression

2. Bayesian Conditional Autoregressive Prior Regression

(CAR)
• Spatially structured and unstructured effects are not 

transferable

• Predictions using new Bayesian Poisson regression

3. Extreme Gradient Boosting (XGBoost) 
• Seamless transferability of machine learning ensemble 

trees/rules using both RCV and SPCV

SPCV XGBoost has the best individual performance from all 

implemented methods

Performance 

metrics

GWPR global 

Poisson

Bayesian 

Poisson

RCV 

XGBoost

SPCV 

XGBoost

Combined 

Average

RMSE 1.9792 1.9804 1.9834 1.8418 1.6114

MAE 1.0265 1.0290 0.8415 0.7542 0.6645

RMSLE 0.5508 0.5520 0.5484 0.5189 0.4514

CA 82.64% 82.74% 83.40% 85.27% 87.55%
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Combined harsh braking predictions for the test urban network
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Using combined average, spatial models mitigate their weaknesses and lead to a balanced predictive outcome for harsh brakings
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Case study findings

Apostolos Ziakopoulos | Conducting spatial predictions of driver behavior using multi-parametric data

1. It is possible to combine high resolution multi-parametric 

naturalistic driving and geometric data that can be exploited to 

conduct meaningful spatial analyses on a road segment basis

2. The implementation of both functional spatial methods

(GWPR, CAR) and innovative ML methods (RCV & SPCV 

XGBoost) is feasible for spatial analyses of harsh braking 

frequencies on a road segment basis

3. Precise predictions (87.6% accuracy) of harsh braking 

frequencies can be successfully conducted. Several 

correlations were obtained.

4. Using combined average, spatial models mitigate their 

weaknesses and lead to a balanced predictive outcome for 

harsh brakings.  

5. The analyses were mirrored for harsh accelerations (89% acc). 

A more complete image of harsh event hotspots is obtained. 
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Future tasks – extension to industrial practices
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1. Correlation with crash data
Conducting spatial analyses including crash data per road segment –

examination of possible hotspot overlap

2. Investigation of further aspects 
Temporal dimension, additional spatial/ML models, additional road 

environments, driver aggressiveness categories

3. Creation of a seamless and constantly updating system 

From smartphone data collection to heatmap rendition on a 

recurring basis using integrated AI algorithms

4. Expanding benefits for road users and authorities

Road safety hotspot identification before crashes occur –

Added information for pedestrians, professional drivers, 

mobility-impaired individuals

5. Additional maps can be created for any indicator

E.g.: speeding, mobile phone use, emissions etc.
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