

Mobility and Safety Research Challenges in Public Transport

George Yannis, Professor NTUA Katerina Folla, Antonis Chaziris, Research Associates

Department of Transportation Planning and Engineering, National Technical University of Athens

Presentation Outline

Department of Transportation Planning and Engineering & NTUA Road Safety Observatory

Public Transport and Mobility Activities

Public Transport and Road Safety

Key Challenges

Department of Transportation Planning and Engineering & NTUA Road Safety Observatory

Department of Transportation Planning and Engineering NTUA

- The mission of the NTUA DTPE (www.transport.ntua.gr) is to educate scientists engineers and promote science in the field of transportation planning and engineering.
- The NTUA DTPE is a Center of Research and Innovation Excellence with global recognition [Ranked 9th in Europe, 39th worldwide (Shanghai Ranking's 2017), Scientific citations: 3rd in Europe, 19th worldwide (Pulse 2017), Road Safety: 2nd in Europe, 6th worldwide (AAP, 2018)].
- ➤ A Team of 60+ Scientists: 7 Internationally recognized Professors, 15 Senior Transportation Engineers and PostDoc, 30 PhD Candidates, 15 Transportation Engineers and other scientists.
- > NTUA DTPE Activities in figures (since mid 80s):
 - ➤ More than 1.100 Diploma and 30 PhD Theses,
 - More than 330 research projects, mostly through highly competitive procedures,
 - ➤ More than 1.100 scientific publications (> 400 in Journals), widely cited worldwide,
 - ➤ More than 150 scientific committees,
 - ➤ International collaborations: EC, UN/ECE, OECD/ITF, WHO, World Bank, EIB, CEDR, FEHRL, ERF, IRF, UITP, ETSC, WCTR, TRB, Universities and Research Centers.

NTUA Road Safety Observatory

- The NTUA Road Safety Observatory (www.nrso.ntua.gr) is a Center of Research and Innovation Excellence on Road Safety, with global recognition [ranked: 2nd in Europe and 6th worldwide (AAP 2018)]
- A Team of 25+ Scientists: internationally recognized Professors, Senior Transportation Engineers, PostDoc, PhD Candidates and other scientists
- An international reference website information system with state-of-the art road safety data and knowledge:
 - > more than 3.000 visits per month
 - ➤ 110+ electronic newsletters since 2007
 - > tens of tweets and social media posts annually
 - ➤ network of more than 4.000+ road safety experts in Greece (1000+) and worldwide (3.000+)
- An excellent research activity:
 - ➤ More than 100 Diploma Theses & 6 PhD Theses,
 - ➤ More than 100 road safety research projects, mostly highly competitive,
 - ➤ More than 500 road safety publications (> 200 in scientific Journals),
 - ➤ More than 100 scientific committees,
 - ➤ International collaborations: European Commission, UN/ECE, OECD/ITF, WHO, World Bank, EIB, CEDR, FEHRL, ERF, IRF, UITP, ETSC, WCTR, TRB, decades of Universities and Research Centers.

Public Transport and Mobility Activities

Public Transport and Mobility activities

NRSO is actively engaging in several PT and mobility related activities:

- Traffic management schemes for the promotion of Public Transport & Sustainable Mobility
- Traffic simulation of urban road networks, including public transport modes
- Mobility characteristics of Traffic Safety with emphasis on vulnerable road users
- Impact Analyses of electromobility, connected and shared mobility
- Impact of Traffic Automation on public transport operations

Athens Great Walk

Reforming public space for the promotion of public transport and active travel modes

- ➤ Harmonized with the Sustainable Urban Mobility
- Promoting public transport, walking and cycling through new bus, pedestrian and cycle lanes as well as mixed traffic with low speeds
- increase accessibility

Public Transport and Road Safety

Public Transport fatalities in the EU

- In 2019, 484 fatalities in accidents involving bus or coach were recorded in the EU
- Most fatalities in accidents involving a bus/coach occur inside urban areas (54%)
- Road fatalities involving buses represent only a 3% of total urban road fatalities, being by far the safest road transport mode (active and passive safety).

Passenger Car

■ Urban roads

Bus/Coach

Cycles

PTW

All roads

Transport modes involved in Public Transport accidents

- In bus or coach accidents, 14% of fatalities are the occupants of the bus or coach
- A high proportion of vulnerable road users (pedestrians, cycles, PTWs) is recorded among the fatalities in accidents involving a bus or coach
- In 2019, pedestrians accounted for 45% of fatalities in bus or coach accidents in urban areas

Fatalities in accidents involving a bus/coach per transport mode in urban areas, EU, 2019

Cross-city analysis in Europe

- A cross-city analysis was performed to estimate the relationship between the mobility characteristics and the number of road fatalities in Europe
- Various mobility indicators related to modal split, distribution of vehicle fleet by type of vehicle and road network characteristics were examined
- Mobility data for 25 European cities were collected from the UITP Mobility in Cities Database and accident data from the EU CARE database
- Generalized Linear Models were developed for all road accident fatalities and for fatalities in different types of accidents

Modelling all fatalities

Variables examined

- ➤ Gross Domestic Product (GDP) per inhabitant (euro)
- Urban population density (persons/ha)
- ➤ Length of roads per urban hectare (meters/hectare)
- Motorcycles per population (motorcycles/thousand inhabitants)
- Public Transport Capacity offered (place*kilometres/inhabitant)
- > Percentage of daily trips by bicycle

Indicator	Estimate	Wald Chi- square	Sig.	e _i	e _i *
Intercept	11,041	9,265	0,002		
LN (GDPcap)	-0,526	3,523	0,061	-1,893	- 22,386
LN (Population density)	-0,402	2,507	0,113	-0,351	-4,149
Road Network Density	-0,007	7,774	0,005	-0,351	-4,149
Motorcycles/pop.	0,019	28,145	0,000	0,293	3,469
PT Capacity	-0,462	2,523	0,112	-0,170	-2,009
% Trips by Bicycle	-0,067	3,872	0,049	-0,085	-1,000
(Scale) ^a	0,213				
Omnibus Test					
Likelihood Ratio Chi-square	23,913		0,01		
Degrees of freedom	6				
Goodness of Fit					
Log Likelihood	-16,161				

Public Transport effects

- Increase in the offered public transport capacity leads to decrease in road fatalities per population.
- Car occupant fatalities and fatalities in darkness present higher rates of decrease compared to the total number of fatalities.

Key Conclusions

- ➤ Buses or coaches are by far the safest modes of road transport inside urban areas, recording significantly fewer fatal accidents.
- The offered public transport capacity plays a significant role in the improvement of road safety of a city
- Increase in the offered public transport capacity by a city leads to greater use of public transport and therefore, to a lower likelihood of being involved in a road accident
- Thus, in order to improve city safety, there is a need not only to create a safer road environment, but also to provide incentives to the citizens for the use of alternative means of transport

Key Challenges

Key Challenges

- ➤ Imbalance between urban mobility and safety policie
- > Speed being a conflicting choice between mobility and safety
- ➤ It is impossible to be fast and safe, unless we use efficient Public Transport
- ➤ Mobility <u>and safety</u> policies <u>can both benefit greatly</u> from the promotion of public transport and active travelling
- ➤ Public transport being up to ten times safer than passenger car traffic
- ➤ Broader alliances are required, UITP being a frontrunner

Mobility and Safety Research Challenges in Public Transport

George Yannis, Professor NTUA Katerina Folla, Antonis Chaziris, Research Associates

Department of Transportation Planning and Engineering, National Technical University of Athens