Forecasting impacts of Connected and Automated Transport Systems within the LEVITATE project

Apostolos Ziakopoulos, PhD
George Yannis, Professor
National Technical University of Athens
CONTENTS

1. Introduction
2. PST Overview
3. PST Methodologies
4. PST Modules
5. Policy Intervention Combination
6. Online PST pre-alpha version
1

INTRODUCTION
THE LEVITATE PROJECT

LEVITATE focuses on the development of a new impact assessment framework, in order to enable policymakers to manage the introduction of connected and automated transport systems, maximise the benefits and utilise the technologies to achieve societal objectives.

- **Project partners:**
 LOUGH (UK), AIT (AT), AIMSUN (ES), NTUA (EL), POLIS (BE), SWOV (NL), TOI (NO), TfGM (UK), City of Vienna (AT), QUT (AU), TJU (CN), UMTRI (US)

- **Duration of the project:**
 36 months (December 2018 – December 2021)

- **Framework Program:**
 Horizon 2020 - The EU Union Framework Programme for Research and Innovation – Mobility for Growth
INTRODUCTION

- Rapid technological advances leave limited margins for the preparation of cities in order to receive Connected and Automated Transport Systems (CATS).

- Automation technologies are expected to roll out in a rapid pace in all transport domains, including land transport modes such as passenger cars, urban public transport and freight transport.

- The LEVITATE project endeavors to develop an open access web-based Policy Support Tool (PST) targeting Decision makers at all levels: Municipalities, Regional Authorities & National Governments.
PST
OVERVIEW
PST SCOPE

- To consolidate the outputs of different methods into an overall framework for the assessment of impacts, benefits and costs of CATS, for different automation and penetration levels and on different time horizons;
- To analyze user needs for a decision support tool aiming to assist in the analysis of urban policy scenarios and targets;
- To develop and implement a toolkit and a decision support tool, allowing the testing of various policy scenarios on the basis of the needs of relevant stakeholders, incorporating both forecasting and backcasting approach;
- To provide the respective policy recommendations.
Three automation use cases are considered:

- Passenger cars
- Urban transport
- Freight transport

Twenty examined impacts are considered, classified into three distinct categories:

- Direct impacts,
- Systemic impacts and
- Wider impacts

Four scenarios of automation penetration are established:

- No automation base scenario
- Pessimistic base scenario
- Neutral base scenario
- Optimistic base scenario

Three different methods used to provide inputs:

- Microsimulation
- Systems dynamics
- Delphi method
3 METHODOLOGIES
MICROSCOPIC SIMULATION

- Impacts of CATS on traffic: travel times, flows, traffic emissions and road safety under several simulation scenarios
- Influence of different CAV penetration rates on a microscopic level
- AIMSUN software is used within LEVITATE, with inputs including road geometry and design, traffic volume, modal split, O-D matrices etc.
- Transportation systems that are undergoing transformation are considered
- Assess impacts of policy interventions (e.g., road use pricing/last-mile shuttles) during a transition period of increasing AV percentage
- Impacts are typically commuting distances, modal split and others as a function of time (or MPR per scenario)
DELPHI PANEL

- A process used to arrive at a collective, aggregate group opinion through an expert panel
- Used to obtain impacts that cannot be calculated by other quantitative methods
- Two-round 45-min questionnaires, regarding 2 to 4 automation interventions based on expertise
- Answers were aggregated as percentage change coefficients
The mesoscopic mobility simulation of agents and their plans of activities is used as a method to estimate:

- travel time of an average 5 km trip within the inner city
- modal splits and modal shifts (i.e. changes in modal split) of active (walking or cycling) and public transport modes of travel
- total distance traveled within the inner city
4 PST MODULES
PST STRUCTURE

- Static
- Searchable
- Components:
 - Bibliography
 - Results
 - Tools
 - Guidelines and policy recommendations

- Dynamic
- Interactive
- Javascript Design
- Sub-systems:
 - Forecasting
 - Backcasting
 - CBA module
 - Case studies
KNOWLEDGE MODULE

1. Bibliography: Relevant literature
 - Systematic literature review
 - The documentation of each sub-use case
 - Short synopsis

2. Project results: Case studies, impact assessments
 - Information regarding the scenarios conditions
 - Assumptions and limitations
 - Showcasing of case study results

3. Documentation of tools: Toolbox of Levitate methods
 - Information regarding the methodological background
 - Assumptions and limitations relevant to each methodology

4. Guideline excerpts: Guidelines & policy recommendations
 - Explanations and tutorials on the use of the PST overall recommendations to cities
 - Additional recommendations from literature
FORECASTING ESTIMATOR

- **Step 1**: Selection of Use Case and Sub-Use Case
- **Step 2**: Definition of initial values
- **Step 3**: Definition of base scenario
- **Step 4**: Details of sub use-case implementation
- **Step 5**: Estimation of forecasted impact indicator values for reference scenario
- **Step 6**: Estimation of forecasted impact indicator values for intervention scenario
- **Step 7**: SUC impact estimation – presentation of results
USER INPUTS

EXAMPLE

● Selection of Passenger Cars use case, Parking pricing sub-use case and 67% park outside policy implementation,

● Selection of 2036 as implementation year and pessimistic automation scenario,

● Selection of initial values and details of sub-use case implementation.
RESULTS
EXAMPLE

● Estimation of forecasted NOx due to vehicles impact indicator values for reference scenario (without SUC),
● Estimation of forecasted NOx due to vehicles impact indicator values for intervention scenario (with SUC),
● SUC NOx due to vehicles impact estimation – presentation of results.
Functionality: The backcasting process is envisioned to be the inverse of forecasting, i.e.: Set a vision, investigate how it can be reached.

Projection: Are the selected measures enough or not?

If not, define best possible attainable outcome.

Measure combination: Using combined Impact Modification Factors (IMFs).

Measure change: Option to substitute a measure for another midway once in the PST (e.g. Measure 1 performs better in low MPR, and Measure 2 performs better in high MPR).
POLICY INTERVENTION COMBINATION
METHODOLOGY

The creation of Impact Modification Factors (IMFs) and their combinations in pairs drawing from the US FHWA HSM philosophy for CMFs

- Additive method: \(\text{IMFc} = 1 - [(1 - \text{IMF}_1) + (1 - \text{IMF}_2)] \)
- Multiplicative method: \(\text{IMFc} = \text{IMF}_1 \times \text{IMF}_2 \)
- Dominant effect method: \(\text{IMFc} = \min(\text{IMF}_1, \text{IMF}_2) \)
- Dominant common residuals method: \(\text{IMFc} = (\text{IMF}_1 \times \text{IMF}_2)^\min(\text{IMF}_1, \text{IMF}_2) \)
- Amplificatory method (not existing in FWHA): \(\text{IMFc} = [\text{IMF}_1 \times \text{IMF}_2]^2 \)
The case of two SUCs:
- SUC1: Parking pricing → Parking toll-balanced behavior
- SUC2: Provision of dedicated lanes → Motorway (outermost)

The CO2 impacts on the year 2035 for the pessimistic scenario
The year of policy implementation is 2025
User input is a baseline of 2000 g/veh-km

\[
\text{CO}_2, \text{Base(SUC}_2\), 2035 = 1043.49 \text{ g/veh-km} \\
\text{CO}_2, \text{SUC}_1, 2035 = 910.02 \text{ g/veh-km} \\
\text{CO}_2, \text{Base(SUC}_2\), 2035 = 1857.58 \text{ g/veh-km} \\
\text{CO}_2, \text{SUC}_2, 2035 = 1841.98 \text{ g/veh-km}
\]

Additive method:
\[
\text{IMF}_c = 1 - [(1 - \text{IMF}_1) + (1 - \text{IMF}_2)] = 1 - [(1 - 0.8721) + (1 - 0.9916)] = 0.8637
\]
\[
\text{CO}_2, \text{comb, 2035} = 2000 \text{ g/veh-km} \times 0.8637 = 1727.39 \text{ g/veh-km}
\]
ONLINE PST PRE-ALPHA VERSION
As the LEVITATE project moves forward, additional results and functionalities will be available for the PST user.

Work conducted within the Road Safety Working Group of LEVITATE will allow for the addition of three crash categories (total crashes, fatal and VRU crashes).

CBA capabilities are already being examined as an extension of the forecasting module database in order to monetize costs and benefits induced from the overall transformation of the transport networks.

Overall, the Levitate PST aspires to become the go-to, one-stop-shop tool for the calculation of societal impacts of automation by experts, authorities, stakeholders and any other interested party.
Dr Apostolos Ziakopoulos
Research Associate
Civil – Transportation Engineer NTUA,
Department of Transportation Planning and Engineering
National Technical University of Athens

Email: apziak@central.ntua.gr
Mobile: +30 6945 362677