Impact of driver feedback on behavior and safety through a smartphone application

Eva Michelaraki
Transportation Engineer, Research Assistant

Together with:
Armira Kontaxi, Apostolos Ziaikopoulos, Panagiotis Papantoniou and George Yannis

National Technical University of Athens
Department of Transportation Planning and Engineering
Introduction

- Accurate monitoring of driver behavior has scientific and technical requirements
- The Internet of Things (IoT) constantly offers new opportunities and features to monitor and analyse driver behavior through:
 - Wide use of smartphones and social media
 - Effective data collection and handling
 - Big Data Analysis
The BeSmart project

The objectives of the project:

- Development of an innovative and seamless Internet of Things application
- Assessment and improvement of behavior and safety of all drivers (car drivers, powered two-wheelers, cyclists, professional drivers) along multi-modal trips
- Organization and exploitation of a naturalistic driving experiment of 200 drivers for 12 months
Research Scope

- Identification of the critical driving parameters that affect harsh events using data from:
 - Smartphone devices
 - Naturalistic driving experiment

- Investigation of the impact of driver feedback on driving behavior as expressed by the frequencies of harsh accelerations and harsh brakings
The BeSmart driving experiment

- The experiment consists of 6 different phases differing in the type of feedback provided to drivers.

- The present study refers to the first two phases:
 - Phase 1 - no feedback to drivers - 12 weeks duration
 - Phase 2 - personalized feedback in means of a trip list and a scorecard regarding drivers’ behavior - 10 weeks duration

- A total of 26,619 trips from a sample of 147 car drivers
The BeSmart Application

- Driving behavior characteristics
 - Speeding
 - Harsh braking/acceleration/cornering
 - Seatbelt use
 - Mobile phone use

- Travel behavior characteristics
 - Total distance
 - Road network type
 - Risky hours driving
 - Vehicle type
Smartphone data collection (1/2)

- A mobile application to record user’s driving behavior (automatic start / stop)
- A variety of APIs is used to read mobile phone sensor data
- Data is transmitted from the mobile App to the central database
- Data are stored in a sophisticated database where they are managed and processed
Smartphone data collection (2/2)

- Indicators are designed using:
 - machine learning algorithms
 - big data mining techniques

- The database analyzed was in .csv format
 - Drivers’ trips are stored per row, the characteristics of which are stored in each column’s variables

- State-of-the-art technologies and procedures in compliance with standing Greek and European personal data protection laws (GDPR)
Descriptive statistics

- Both types of harsh events (accelerations and brakings) are reduced in the 2nd phase of the experiment.

- The percentage of driving above the speed limits and driving while distracted by the mobile phone is reduced in the 2nd phase of the experiment.
Theoretical Background

Selection of statistical method:

- Need for event prediction - data counting (data modeling)
- Generalized Linear Models (GLM) - Poisson Regression
- Introduce random effects to capture different driving behaviors and extend GLMs as Generalized Linear Mixed-Effects Models (GLMMs), given by the following formula:

\[\log(\lambda_i) = \beta_0 i + \beta_j x_{ji} + \beta_{n-1} x_{n-1} + \varepsilon \]
Results (1/2)

- GLMMs for harsh acceleration counts

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GLMM for Phase 1</th>
<th>GLMM for Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>s.e.</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.927</td>
<td>0.091</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>0.321</td>
<td>0.022</td>
</tr>
<tr>
<td>Percentage of Speeding Duration</td>
<td>0.074</td>
<td>0.013</td>
</tr>
<tr>
<td>Percentage of Mobile Use Duration</td>
<td>0.042</td>
<td>0.011</td>
</tr>
<tr>
<td>Log(Total Trip Duration)</td>
<td>0.848</td>
<td>0.051</td>
</tr>
<tr>
<td>Log(Total Trip Distance)</td>
<td>-0.231</td>
<td>0.050</td>
</tr>
</tbody>
</table>
Results (2/2)

- GLMMs for harsh braking counts

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GLMM for Phase 1</th>
<th></th>
<th>GLMM for Phase 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>s.e.</td>
<td>p-value</td>
<td>Sig.</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.182</td>
<td>0.067</td>
<td>0.006</td>
<td>**</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>0.327</td>
<td>0.016</td>
<td>0.000</td>
<td>***</td>
</tr>
<tr>
<td>Percentage of Speeding Duration</td>
<td>0.097</td>
<td>0.010</td>
<td>0.000</td>
<td>***</td>
</tr>
<tr>
<td>Log(Total Trip Duration)</td>
<td>0.885</td>
<td>0.045</td>
<td>0.000</td>
<td>***</td>
</tr>
<tr>
<td>Log(Total Trip Distance)</td>
<td>-0.298</td>
<td>0.036</td>
<td>0.000</td>
<td>*</td>
</tr>
</tbody>
</table>
Conclusions (1/2)

- Impact of detailed trip parameters
 - Maximum speed, the percentage of speeding duration and total trip duration positively correlated with both harsh event frequencies
 - On the other hand, the exposure metric of total trip distance negatively correlated with both harsh event types
 - The percentage of mobile use duration, significant only for harsh accelerations with a small positive correlation
Conclusions (2/2)

- Impact of driver feedback
 - Initial findings suggest drivers’ improvement on their performance regarding all recorded driving behavior metrics
 - Coefficient values change in a similar direction for both types of events between the two experiment phases
 - Feedback effects not easily discernible in macroscopic investigations; driver clusters will be analyzed in the future
Future research

- Analysis of different driving behavior parameters identified by the road safety literature as risk factors (e.g. exceeding speed limit, mobile phone distraction)

- Analyses per gender, age, history of accidents, self-assessment, driving experience and more demographic characteristics

- Investigation of feedback effect on driving behavior and safety of motorcyclists
Impact of driver feedback on behavior and safety through a smartphone application

Eva Michelaraki
Transportation Engineer, Research Assistant

Together with:
Armira Kontaxi, Apostolos Ziaiopoulos, Panagiotis Papantoniou and George Yannis

National Technical University of Athens
Department of Transportation Planning and Engineering