Automated Urban Transport Services Webinar

Event: LEVITATE Webinar Location: Online Meeting Date: November 23, 2021

Program

- Introduction to LEVITATE Project Andrew Morris (Loughborough University)
- Overview of Automated urban transport impact assessment George Yannis (National Technical University of Athens)
- Microscopic simulation Maria Oikonomou (National Technical University of Athens)
- Mesoscopic simulation Johannes Muller (Austrian Institute of Technology)
- Automated ridesharing Rajae Haouari (Loughborough University)
- System dynamics Martin Zach (Austrian Institute of Technology)
- Delphi method Julia Roussou (National Technical University of Athens)
- Conclusions —George Yannis (National Technical University of Athens)
- Questions and webinar closing George Yannis (National Technical University of Athens)

Automated Urban Transport Services Overview

Event: LEVITATE Webinar Location: Online Meeting Date: November 23, 2021

Use Cases

WP5 steps in LEVITATE

Goal	Method	Explanation
1. Exploration	for Literature review	Existing literature on CCAM/CAVs/ADAS
the sub-use cases to study and the impacts to quantify		A group of key stakeholders – international/ twinning partners, international organisations, road user groups, actors from industry, insurances and health sector support the project and participated in workshops.
2. Quantification	on Traffic microscopic simulation	AIMSUN microsimulation of traffic at the city-district level (based on modelling individual vehicles)
	Traffic mesoscopic simulation	MATsim modelling of behaviours and choices of individuals (based on groups or streams of vehicles) at the city level
	System dynamics	modelling technique where the whole system is modelled at an abstract level by modelling the sub-systems at component level and aggregating the combined output.
	Delphi study	The Delphi method was used to determine those impacts that cannot be defined by the other quantitative methods
3. Synthesis & discussion	Synthesis	Major impacts summarized for the policy areas Environment, Mobility and Society/ Economy/ Safety
	Policy considerations	Recommendations & considerations for policymakers based on the wider literature

levitate

Automated Urban Transport Sub-use Cases

- Point to Point automated urban shuttle service (AUSS): automated urban shuttles travelling between fixed stations, complementing existing urban transport
 - a) Point-to-point AUSS connecting two modes of transport
 - b) Point-to-point AUSS in a large-scale network
- **2. Autonomous mobility on-demand**: flexible ondemand automated shuttle bus service that includes anywhere-to-anywhere AUSS, last-mile AUSS and ehailing, complementing existing urban transport

Impacts and Methods

Impact	Method		
Short term impacts / direct impacts			
Travel time	Mesoscopic simulation/Delphi		
Vehicle operating cost	Delphi		
Access to travel	Delphi		
Medium term impacts / systemic impacts			
Amount of travel	Mesoscopic simulation/Delphi		
Congestion	Microscopic simulation		
Modal split using public transport	Mesoscopic simulation/Delphi		
Modal split using active travel	Mesoscopic simulation/Delphi		
Shared mobility rate	Mesoscopic simulation/Delphi		
Vehicle utilisation rate	Mesoscopic simulation/Delphi		
Vehicle occupancy	Mesoscopic simulation/Delphi		

Impact	Method	
Long term impacts / wider impacts		
Road safety	Road safety method	
Parking space	System dynamics/Delphi	
Energy efficiency	Delphi	
NO _x due to vehicles	Microscopic simulation	
CO ₂ due to vehicles	Microscopic simulation	
PM ₁₀ due to vehicles	Microscopic simulation	
Public health	Delphi	
Accessibility in transport	Delphi	
Commuting distances	System dynamics	

Conclusions

Event: LEVITATE Webinar Location: Online Meeting Date: November 23, 2021

Contents

- Impacts of AUSS on the environment
- Impacts of AUSS on mobility
- Impacts of AUSS on society, safety and economy
- Final remarks
- Upcoming webinar

Impacts on the environment

- Microsimulation results indicated that the introduction of AVs in the urban environment will significantly reduce CO2 emissions
- The introduction of Automated Urban Shuttle Services will lead to a similar emissions reduction as the baseline scenario
- The Delphi results indicated that all sub-use cases will increase energy efficiency.
- **Point-to-point AUSS** will lead to the largest energy efficiency increase in the long-term

Impacts on mobility (1/2)

- According to experts access to travel will be increased by the introduction of all AUSSs.
- Kilometers travelled and congestion levels depend on the CAVs market penetration rates. During the transition phase when conventional and mixed levels of first and second-generation CAVs share the urban roads congestion levels are increased.
- Anywhere-to-anywhere AUSS lead to the largest reduction in travel time

Impacts on mobility (2/2)

- Modal split using public transport will be mostly affected by the introduction of CAVs. Modal split using active travel will be less affected.
- Vehicle utilization rate will be reduced after the introduction of AUSS compared to the baseline scenario
- Vehicle occupancy will be reduced after the introduction of on-demand AUSS

Impacts on society, safety and economy

- Road safety will be significantly increased after the introduction of CAVs and AUSSs in the urban environment. At larger shares of second generation vehicles (60-100%) the crash rate of urban transport vehicles can reach a reduction of up to 50%-69%.
- The Delphi results indicated that all AUSSs will **improve** accessibility in transport.
- **Point-to-point AUSS** is expected to deliver extra **benefits** for the city in terms of vehicle operating costs, less parking space required and better public health.

Final remarks

- The **LEVITATE** impact assessment results **confirm** the results of other studies, showing that **positive impacts** on environment, economy, society and safety are to be expected when larger shares of first- and second-generation cooperative, connected and automated vehicles are introduced in the traffic system.
- Benefits (higher energy efficiency, better access to travel, improvement public health, and lower vehicle operating costs) have been estimated from the introduction of pointto-point AUSS and, to a lesser degree, from on-demand AUSS.
- All results will be introduced in the LEVITATE PST, after the necessary transferability studies, in order to give access to the impact assessment tool to all city managers and policy makers

LEVITATE Upcoming Webinars

- Keep checking the LEVITATE project website <u>https://levitate-project.eu/</u>
- Case Studies

Automated Urban Transport Services Webinar

Event: LEVITATE Webinar Location: Online Meeting Date: November 23, 2021

