Safer Mobility with Artificial Intelligence

George Yannis, Professor

Apostolos Ziakopoulos, Research Associate

National Technical University of Athens **EXAMPLE A CONTRACT OF A CONTR**

Alexandre Santacreu, Policy Analyst

Road Safety Background

- **1.2 million fatalities** annually from road crashes (WHO, 2021)
- U.N. set a target of preventing at least 50% of fatalities by 2030.
- However, with current/legacy tools this target is **unattainable**.
- As a result, **Vision Zero** is adopted by more policymakers
- Road/traffic safety is now approached holistically within the Safe System approach:

All humans inevitably make **mistakes**. When they happen, all transport system elements must contribute to fatality **avoidance**

Reactive approaches vs. Proactive approaches

- Traditionally, we monitor crash locations and intervene in areas with increased risk
- This implies that crashes will continue to happen where they happened **before**
- Underreporting issues distort our understanding
- Lower-income regions and countries are even more susceptible
- Crashes need to happen for action to be taken

- A wealth of newly available data allows for examinations **before crashes** occur
- We can employ an array of Surrogate Safety measures (e.g. harsh brakings, speeding, time-to-collision) for analyses
- Crashes do not need to happen for action to be taken
- We can analyze road networks via newly available data to identify systematic risks & solutions
- Al is a major tool for proactive approaches

ITF Report AI-Road Safety

ITF (2021), Artificial Intelligence in Proactive Road Infrastructure Safety Management: Summary and Conclusions, ITF Roundtable Reports, No. 187, OECD Publishing, Paris.

Expert discussion held on 10-12 February 2021 at the **Roundtable** on Artificial Intelligence in Road Traffic Crash Prevention.

Experts from **33 organizations and 15 countries**, representing Public Authorities, Transport, Technology and Data Industries, Research and Academia and International Organizations.

Artificial Intelligence in Proactive Road Infrastructure Safety Management Summary and Conclusions

Al Advances in Road Risk Estimation

- An array of new AI methods and machine/deep learning or similar algorithmic models available to road safety researchers, stakeholders and authorities for real-time crash risk estimates.
- Big data on crash occurrence and road and traffic characteristics from infrastructure sensors are transformed into multi-dimension static or dynamic maps of road risk prediction and road & driver star rating.
- Crash datasets are imbalanced, rare event cases which find new approaches and venues of analysis through AI methods.
- Infrastructure assessment frameworks start embracing AI methodologies (e.g. the i-RAP transition to Ai-RAP).
- A large number of model configurations show very promising performance, albeit on specific datasets; transferability capabilities are yet uncertain.

Al Advances in Telematics & Driver Monitoring

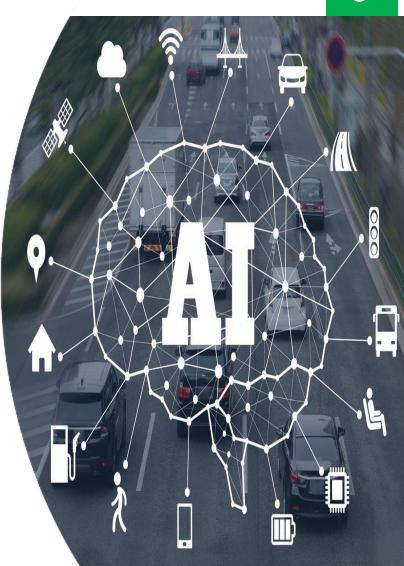
- The **insurance industry** is heavily investing in telematics, offering **reduced premiums** for safer driving.
- Al and data fusion technologies used in all stages of road safety data collection, transmission, storage, harmonization, analysis and interpretation from telematics.
- **Personalized feedback** can be obtained almost instantaneously.
- Algorithm-based route analysis and personalized hotspot detection features are actively being examined.
- **During-trip and post-trip interventions** are enabled, best administered with gamification and reward systems.

Al Advances in Vehicle Technology (1/2)

- Navigation of complex road environments becomes more attainable at an increasing rate, high-end RADAR/LIDAR and sensor technologies at the forefront of developments.
- Several traditional problems are eliminated by RADAR/LIDAR (e.g. reliance on lighting/obstructions).
- The decision making process is improved and refined through deep learning.
- Purpose-made systems receive purpose-made tools and algorithms, such as grocery delivery or fixed-route public transport.
- Most developers design their systems independently and are not reliant on infrastructure adaptations.
- Over-the-air Al upgrades become a new reality.

Al Advances in Vehicle Technology (2/2)

- More **physical test areas** and **virtual testbeds** are provided and examined.
- Software **errors** are gradually contained, **reaction times** are minimized.
- Facial recognition technologies aid **commercial company claims** with insurance carriers (e.g. Nauto).
- Vehicle cooperation algorithms: traffic conflict reduction, efficient traffic management.
- Additional connectivity byproducts: increased parking availability, increased fuel efficiency, freight vehicle platooning.
- Flying vehicles (VTOL) concepts are co-considered.



Can Al support policymaking?

AI facilitates **proactive** traffic safety management:

- 1. Through **data collection** via sensor systems
- 2. Through hotspot identification via predictive modelling
- Al is notoriously dependent on large amounts of quality data, which can be costly in time and budget
- Policymakers will have to define the most beneficial datasets and prioritize their acquisition
- Ultimately, AI will appear as 'black boxes' to non-technical practitioners and politicians
- **Trust and public acceptance** will determine the adoption of Albased techniques, actors need to promote the creation and operation of responsible AI systems.

Create responsible & trustworthy AI

The OECD calls on all AI actors to **promote**:

- **1.** Inclusive growth, sustainable development and well-being: Pursue beneficial outcomes by reducing inequalities
- 2. Human-centred values and fairness: Respect rule of law and human rights, place safeguards to ensure this happens appropriately to context
- **3.** Transparency and explainability: Clarify system operations, enable outcome disputes
- **4. Robustness, security and safety**: Resilience against time & misuse, traceability, systemic risk management
- 5. Accountability:

Individuals must remain accountable for AI decisions/actions

AI data-related topics

AI operation and promotion of related policies can **already begin**:

Local and national governments have access to **a wealth of information** through roadside sensors and CCTV

However, industrial partners are typically **reluctant to share** their data due to:

- the silo effect the lack of connections between organizations and between teams within organizations,
- technical costs (collecting, processing, hosting, etc.), which are not negligible,
- **privacy protection** imperatives and associated fears of litigation, often cited as the #1 barrier (e.g. GDPR),
- **competition** commercial sensitivities.

Al in future transport networks

AI-piloted automated technologies will be adopted in a wide scale in the coming decades, with profound consequences.

Instead of a solely diagnostic tool, AI will become **an active element** of road transport and traffic safety

A multitude of **impacts** will emerge in the affected transport systems:

- Direct: changes that are noticed by each road user on each trip (e.g. travel time)
- **Systemic**: impacts within the transport system (e.g. modal split)
- Wider: impacts exceeding the transport system (e.g. road fatalities and injuries, emissions)

It is imperative to **anticipate** the advent of automation and to analyze the **impacts of automated-based policies proactively** (e.g. Levitate and SHOW projects).

Synopsis of current knowledge

- AI facilitates proactive traffic safety management through (i) data collection via sensors and (ii) hotspot identification
- AI pushes the limits of pattern recognition beyond human capabilities and may discover previously unknown crash-prone road configurations
- Al can have black-box effects, which are now slowly overcome by **explainable AI** algorithms
- The main **limitation** now is (i) data, due to isolation 'silos' effects and (ii) lack of individuals with suitable modelling expertise
- Traditional (infrastructure) interventions still have **traditional problems** (e.g. regression-to-the-mean)

Future directions for AI-based policies (1/2)

- Do not wait for real-time/big data before developing risk maps and other diagnostic tools
- Design user-friendly, risk-mapping tools that justify and support road safety investments
- Develop a competitive market for the sharing and monetizing of traffic and mobility data
- Mandate the sharing of aggregate vehicle data, define a minimum standardized dataset that manufacturers should report
- Align new tools with precise policy objectives, and avoid distractions with side-goals

Future directions for AI-based policies (2/2)

- **Develop new skills** and digital infrastructure within authorities both to demand accurate results and to interpret them correctly.
- **Support research** and innovation towards trusted and explainable AI in road safety, facilitating benchmarking and validation of methods for proactive road network safety management.
- **Clarify regulatory frameworks** for data protection and digital security.
- Learn from other fields (e.g. insurance, telecommunications etc.) and integrate best practices for data sharing and privacy protection

15

Safer Mobility with Artificial Intelligence

George Yannis, Professor

Apostolos Ziakopoulos, Research Associate

National Technical University of Athens **EXAMPLE A CONTRACT OF A CONTR**

Alexandre Santacreu, Policy Analyst

