

State of the art on spatial analysis and visualization tools for potential telematics applications – SmartMaps

Armira Kontaxi

Transportation Engineer, PhD Candidate

Together with: Apostolos Ziakopoulos, Dimitrios Nikolaou, George Yannis

The SmartMaps project

- Project partners:
 - National Technical University of Athens, Department of Transportation Planning and Engineering <u>www.nrso.ntua.gr</u>
 - OSeven Telematics <u>www.oseven.io</u>
 - Global Link <u>www.globallink.gr</u>
- Duration of the project:
 - 30 months (June 2021 December 2023)
- Operational Program:
 - "Competitiveness, Entrepreneurship and Innovation" (EPAnEK) of the National Strategic Reference Framework (NSRF) – 2nd iteration

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΥΝΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΕΙΔΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΤΓΙΑ & ΤΣ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΑΥΕΚ

EPANEK 2014-2020 OPERATIONAL PROGRAMME COMPETITIVENESS• ENTREPRENEURSHIP•INNOVATION

Background

- Technological advancements during recent decades have led to the development of a wide array of tools and methods to record driving behaviour and measure various aspects of driving performance
- Smartphones and data obtained from their sensors are increasingly used as informative devices for monitoring driver behaviour
- In order to effectively integrate road network distances and to precisely estimate crash risk in each location, several spatial statistical approaches and visualization tools have been implemented in the literature

Objective

- The objective of this presentation is to provide a review of the scientific literature regarding:
 - **spatial approaches** and spatial analyses in road safety
 - **visualization tools** of driving behaviour

Spatial analyses (1/2)

Thorough review of **international scientific studies** of spatial analysis applications in road safety

- Available methodologies:
 - Geographically Weighted Regression (GWR)
 - Bayesian Conditional Autoregression (CAR)
 - Full/Empirical Bayesian Analyses
 - Machine learning approaches
 - Kernel density approaches etc.
- Wide array of parameters related to:
 - Road traffic (speed, traffic volume, vehicle-kilometers)
 - Road environment (gradient, curvature, lane number/width, intersection number/density etc.)
 - **Demographic characteristics** (population, road user age)
 - Socio-economic characteristics (income, employment)
 - Land use (commercial, industrial, residential)

Spatial analyses (2/2)

- The majority of studies analyze crash frequency specially with count-data models (GWPR/CAR Poisson)
- Additional issues:
 - Boundary problem
 - Modifiable areal unit problem
 - Lack of common working framework
 - Most research done in modernized countries
- All variables are examined and analyzed on a spatial unit basis (AADT/zone, average speed/road section)
- Methodological advantages and disadvantages:
 - Frequentist models (e.g. GWPR): Intuitive interpretation, reduced fit capabilities
 - **Bayesian models** (e.g. CAR): Wide applications & adaptation to new data trends, lack of informative priors for initialization
 - Machine learning (e.g. SVM/CNN): Flexibility & handling of big data, harder interpretation – occasional 'black box' effect

Knowledge gaps

- Spatial analysis objectives are dictated by data availability:
 - No research was found in urban road networks due to lack of data
- > Dependent variables:
 - Limited analyses regarding crash injury severity
 - No research pertinent with spatial analysis of harsh events was found
- Despite precise hotspot location capabilities, there is a lack of transferability of spatial analysis results:
 - No predictions are conducted for different study areas
- Large margins for exploitation of new technological advancements for spatial analyses:
 - Enhancement of existing data production of new datasets

Meta-regressions (1/2)

Parameters of exposure to danger

- Serve for the creation of a common baseline between models and results
- Most prevalent parameters: roadway length, vehicle-miles/kms, AADT
- Meta-regressions: Original research
 - Quantitative investigation of factors which systematically influence exposure parameters
 - A means of investigating **heterogeneity** of scientific study results
 - Conducted with the inverse variance technique

Meta-regressions (2/2)

Results for road safety spatial analyses:

- AADT coefficients are positively correlated with taking speed limit and road user age into consideration
- Roadway length coefficients are positively correlated with analyzing only fatal crashes compared to total crashes
- AADT coefficients are positively correlated with analyzing crashes on a county level compared to TAZ level

Visualisation tools - Background

- Advanced methods based on spatial visualization of driving behaviour provide:
 - simple visualization of high-risk road segments
 - possibilities to analyze spatial impact and spatial interactions with other geographical factors
- An emerging research direction is the interdisciplinary approach to:
 - **integrate and leverage** different types of data (including mobile data and big data)
 - **analyze** them (meaningfully) with a set of advanced analytical spatial visualization tools
- Six open source spatial visualization tools that can also be used to visualize driving behaviour are presented

Visualisation tools (1/2)

- Leaflet is one of the most popular options for creating interactive JavaScript maps, and it is designed with simplicity, high performance and usability at the same time
- Open Layers makes it easy to insert a dynamic map into any web page, while it can display tile map, vector data and markers loaded from any source
- Polymaps is a free JavaScript mapping library used to create interactive maps and utilizes scalar vectors and is ideal for displaying information at country, city and even individual street level

Visualisation tools (2/2)

- QGIS is an easy-to-use mapping and spatial analysis tool used for creating, editing, visualizing and efficiently analyzing geospatial information on Windows, Mac and Linux
- GeoDa serves as an introduction to spatial data science and is designed to facilitate new insights from data analysis by exploring and modeling spatial patterns
- OrbisGIS is a multi-platform geographic information system (GIS) that proposes new methods and techniques for modelling, representing, processing and sharing spatial data

Impact on Telematics Applications

- Spatial analysis tools allow telematics companies to identify patterns and trends in vehicle data, such as routes taken, driving behavior, and fuel consumption and thus promote safer and greener driving
- Visualization tools offer the opportunity to present telematics data in a more user-friendly and accessible way; dashboards and interactive maps for easy and informative use by all
- By combining spatial analysis and visualization tools with other data sources, such as weather and traffic data, telematics applications can provide more accurate and predictive insights to their customers

State of the art on spatial analysis and visualization tools for potential telematics applications – SmartMaps

Armira Kontaxi

Transportation Engineer, PhD Candidate

Together with: Apostolos Ziakopoulos, Dimitrios Nikolaou, George Yannis