

Spatial analysis of telematics surrogate safety measures across road environments - SmartMaps

Apostolos Ziakopoulos

Transportation Engineer, PhD

Together with: Dimitrios Nikolaou, Armira Kontaxi, George Yannis

The SmartMaps project

- Project partners:
 - National Technical University of Athens, Department of Transportation Planning and Engineering www.nrso.ntua.gr
 - OSeven Telematics www.oseven.io
 - Global Link <u>www.globallink.gr</u>
- Duration of the project:
 - 30 months (June 2021 December 2023)
- Operational Program:
 - "Competitiveness, Entrepreneurship and Innovation" (EPAnEK) of the National Strategic Reference Framework (NSRF) – 2nd iteration

European Regional

Development Fund

Objectives

- Exploitation of large-scale spatio-temporal data from smartphone sensors.
- ➤ Development of smart driver behaviour maps with online information on safety conditions and eco-driving (by reducing fuel consumption).
- Creation of a comprehensive tool to promote safe driving behaviour with application in Greece and around the world.

Data Collection

Road Geometry Data (OpenStreetMap)

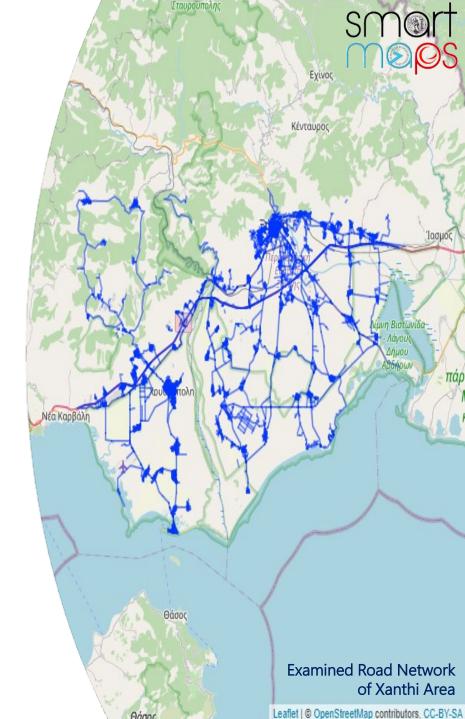
- Length
- Curvature
- Slope

Observed Driving Data (Global Link)

- > Seatbelt use
- > Helmet use
- Speeding
- Distraction

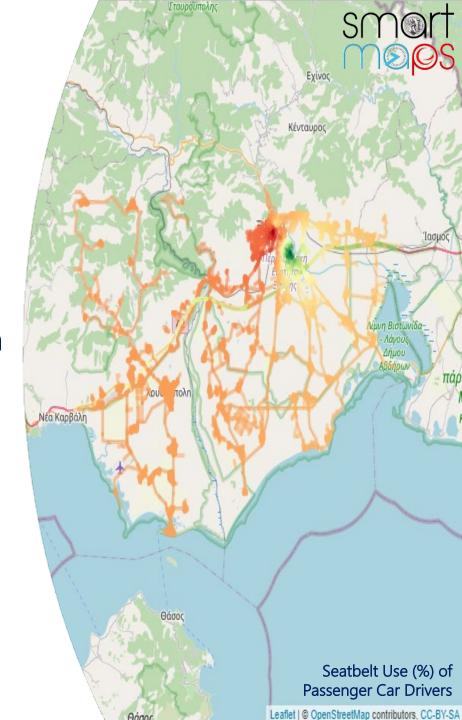
Naturalistic Driving Data (OSeven Telematics)

- > Harsh braking
- Harsh acceleration
- Speeding
- Distraction


Road Crash Data (ELSTAT)

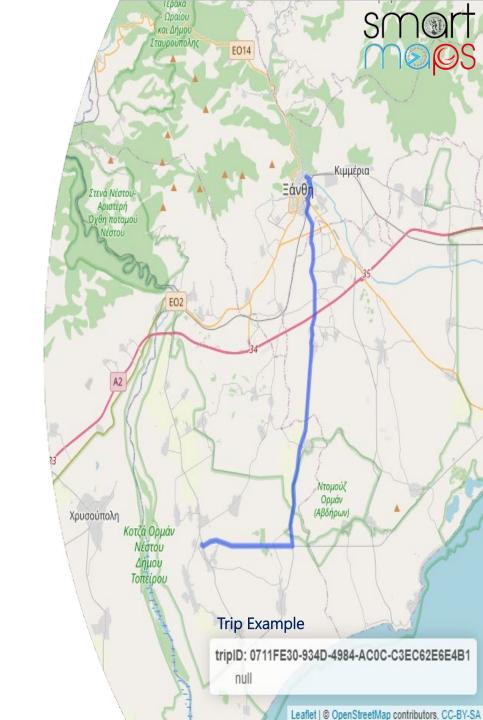
Road Geometry Data

- The area of Xanthi was chosen as a challenging area in terms of data availability for the initial investigations.
- The process of data collection and analysis carried out in Xanthi area will be replicated in the remaining Greek Regions.
- 6099 road segments:
 (Mean Length: 290m, Mean Angle Rate: 0.50 [1/m],
 Total Length 1700km)
- Road Types: (68% residential, 12% tertiary, 7% secondary, 3% motorway, 10% other types)
- ➤ Slopes: 76% (flat: 0-3%), 10% (mild: 3-5%), 7% (medium: 5-8%), 3% (hard: 8-10%), 4% (extreme: >10%).



Observed Driving Data

- Field measurements on road user behaviour indicators in 10 locations (3 motorway, 4 rural, 3 urban).
- ➤ Inverse Distance Weighting (IDW) was used twice for spatial interpolation in the entire road network (motorways, non-motorways).
- ➤ IDW estimates the value of a variable at a given location by using a weighted average of the surrounding known values, with weights determined by their distance to the target location, assuming that nearby locations have similar values.
- > ~3500 observations of passenger car drivers. (seatbelt, distraction, speeding)
- > ~260 observations of PTW drivers (helmet).



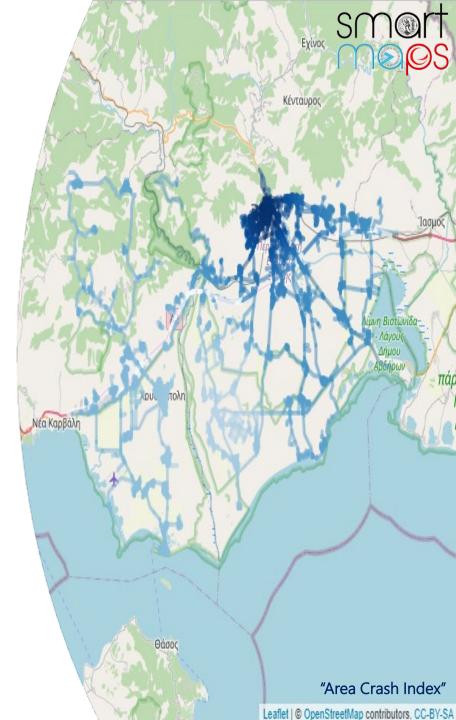
Naturalistic Driving Data

> 5129 trips in the examined area in 2021.

Map matching of naturalistic driving data and considered road segments.

Naturalistic Driving Data per segment	Min.	Mean	Max.
Trip count	0	32	1272
Speeding rate (sec/trips)	0	0.26	110
Mobile usage rate (sec/trips)	0	0.34	133
Harsh acceleration rate (sec/trips)	0	0.004	1.00
Harsh braking rate (sec/trips)	0	0.007	1.42

Road Crash Data


- ➤ Inaccurate recording of crash locations (lack of coding with geographical coordinates in the national database).
- Aggregate crash data for 4 municipalities (Xanthi, Avdira, Myki, Topeiros)

Municipality	Motorway	Crashes (2016-2020)	Fatalities (2016-2020)	Serious Injuries (2016-2020)	Slight Injuries (2016-2020)	KSI (2016-2020)
Xanthi	No	108	10	15	128	25
Xanthi	Yes	1	0	2	0	2
Avdira	No	70	12	20	73	32
Avdira	Yes	5	1	2	10	3
Myki	No	20	4	6	16	10
Myki	Yes	0	0	0	0	0
Topeiros	No	32	7	7	36	14
Topeiros	Yes	4	3	4	7	7

Spatial interpolation of "area crash-related indexes" based on the total numbers using IDW twice (motorways, nonmotorways).

(Crashes, Fatalities, Killed and Seriously Injured (KSI)).

Spatial Error Model - Background

- The spatial error model handles the spatial autocorrelation in the residuals.
- The idea is that such errors (residuals from regression) are autocorrelated in that the error from one spatial feature can be modeled as a weighted average of the errors of its neighbors.
- > This model can be expressed as:

$$y = X\beta + u$$
, $u = \lambda_{Err} Wu + \epsilon$

- where y is an (N×1) vector of observations on a response variable taken at each of N locations,
- > X is an (N×k) matrix of covariates,
- \triangleright β is a (k×1) vector of parameters,
- > u is an (N×1) spatially autocorrelated disturbance vector,
- > ε is an (N×1) vector of independent and identically distributed disturbances
- \triangleright λ_{Err} is a scalar spatial parameter.

Spatial Error Model - Results

Dependent variable: log(harsh_braking_count + 1)

Type: error

Coefficients: (asymptotic standard errors)

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.1939	0.0693	-2.7986	0.0051
log(1 + length)	0.0357	0.0038	9.2756	< 2.2e-16
log(1 + slope)	-0.0059	0.0061	-0.9652	0.3345
log(1 + efficiency)	0.1029	0.0579	1.7751	0.0759
log(1 + speeding_count)	0.0846	0.0046	18.4466	< 2.2e-16
mobile_usage_rate	0.0064	0.0015	4.3904	< 0.001
PC_D_Seatbelt_Yes_p	-0.0938	0.0899	-1.0437	0.2967
Crashes2016_2020	0.0003	0.0002	1.6569	0.0975
trip_count	0.0024	0.0000	49.6294	< 2.2e-16

Lambda: 0.022917, LR test value: 5.2388, p-value: 0.022088

AIC: 3896.3, (AIC for lm: 3899.5)

- Lambda value of 0.022 is statistically significant, suggesting the error term is spatially autoregressive.
- From the AIC, the spatial error model performs much better than the linear model, as lower AIC indicates better fit.

Key Conclusions

- ➤ Road geometry characteristics, naturalistic driving data, observed driving data and historical road crashes were combined for road safety modelling.
- Significant positive effects of segment length, speeding events, and trip count on harsh braking events count.
- > Spatial models provide a better fit to the data than non-spatial models.
- Methodology applied in Xanthi area can be extended to other Greek regions and national road network.

Spatial analysis of telematics surrogate safety measures across road environments - SmartMaps

Apostolos Ziakopoulos

Transportation Engineer, PhD

Together with: Dimitrios Nikolaou, Armira Kontaxi, George Yannis