

Micromobility Safety

Katerina Deliali, PhD

Together with: Virginia Petraki & George Yannis

Micromobility Safety

> Objective:

- Assist ITF in updating the content of the previously published report (2020) on safe micromobility.
- The new report, to be called "Micromobility: Back to the Future" will consist of two parts with the Micromobility Safety being one of those and the analysis is conducted by NTUA.
- The other part relates to the environmental impacts of the operation of micromobility vehicles.
- > Duration of the project:
 - 6 months

Safe Micromobility

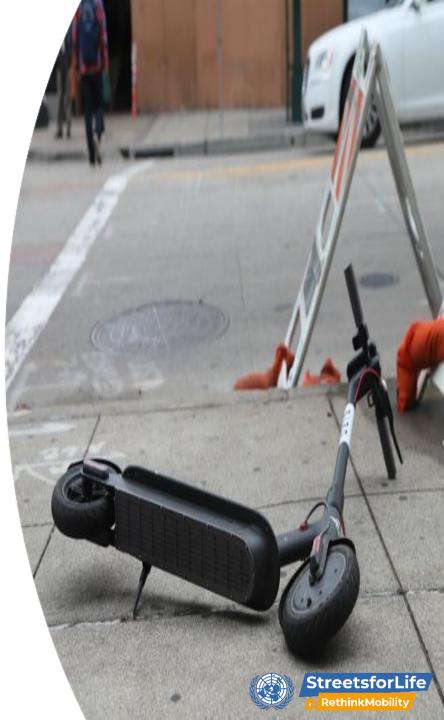
Good to Go?

Assessing the Environmental Performance of New Mobility

Objectives

- > Review and synthesize the scientific and gray literature on the safety of micromobility (presented)
- Collect and analyze quantitative and qualitative data (cities, operators) to capture additional safety facts and trends.
- > Synthesize information from all available sources to provide policy recommendations within the context of the "Safe System Approach".

Methodology


- > <u>Current phase</u>: Review and synthesis of the literature:
 - Scientific papers
 - Factsheets
 - Reports & policy briefs
 - To collect information about e-scooters, e-bikes, and bikes:
 - Crash, injury, fatality statistics and trends
 - Road users involved in crashes
 - Risk factors (e.g., weather, user behaviors, etc.)
 - Exposure data and modal shift to micromobility
- Next phase: Interview and questionnaire data, realworld data (e.g., crashes)

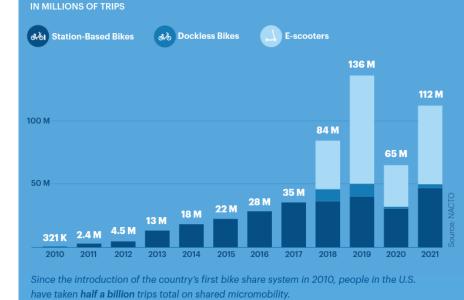
Results – Crash & Injury Trends

- When a crash involves an e-scooter then:
 - Most of the times there is an injury (73-94%)
 - Most of the times (61-76%) it results in a minor injury
 - $\,\circ\,$ Injuries mostly affect the upper body and the head
- Most of e-scooter reported injuries (93%) are due to single-user crashes (Toofany et al. 2021).
- Single-user e-scooter injuries mostly involve the rider and secondly, pedestrians.
- Falls specifically account for a significant number of crashes (~80%) and injuries (64-85%).
- For shared e-scooters injuries account for 15% of all incidents.
- Fatalities & e-scooter crashes:
 - Fatalities correspond to 9% of reported injuries
 - $\circ\,$ Most e-scooter fatalities (~85%) are due to motor vehicles
 - For shared e-scooters fatalities account for < 0,10% of incidents
- Crashes and injuries are going up, same as demand data is missing.

Results – Safe Users, Vehicles, Infrastructure

Katerina Deliali, Micromobility Safety

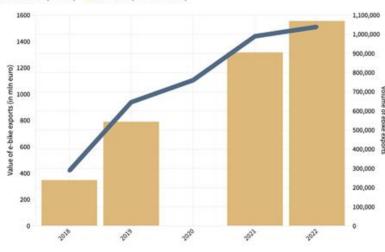
Safe Users	Safe Vehicles	Safe Infrastructure
 Risk factors: Speeding Riding under the influence of alcohol/drug Helmet use Nighttime/reduced lighting conditions Non-experienced riders 	 Design features: max speed limit, larger wheels and tyres, brakes, back and front lights, bells Shared micromobility modes: periodical safety/ maintenance checks additional app-based features such as: geofencing, drunk driver detection 	 Risk factors: Lack of cycling infrastructure, especially separated cycle lanes and proper intersection treatments to ensure safe crossings Poor pavement quality (cracked pavement, potholes)


Results – Safe Trips

- Several sources (e.g., sales of micromobility vehicles, travel demand data, etc.) indicate that there is an **increasing trend in micromobility**.
 - Higher micromobility demand \rightarrow "Safety-in-numbers"
- Modal shift studies focus mainly on survey data (also from operators).
- Depending on the area & available modes, micromobility might replace car trips (most likely in the US) or public transport trips (most likely in Europe).
- Modal shift does occur between micromobility modes, too.

Safety implications of micromobility trips

- Car/taxi trip replacement can improve road safety as exposure to motor vehicles decreases.
- More micromobility modes on the road improve "safety-innumbers".
- Shifting from walking/cycling to micromobility should not be seen as a negative trend as this shift can result in either more frequent users & longer trips.


Shared Micromobility Ridership in the U.S. from 2010-2021

Taiwanese e-bike exports Export volume and value since 2018

🔳 sales volume (in units) 🛛 📕 sales value (in million euros)

BIKE europe

reetsforLife

Source: BOFT / Bike Europe + *2020 data unavailable

Streets for Life

- The massive adoption of micromobility modes has the potential to realize important goals related to society and the environment.
- As evolving modes of transport, there are many knowledge gaps about their operation and especially about their safety.
- Failing to understand their safety implications and provide countermeasures and a holistic regulatory framework, societies are kept from realizing safety, equity, accessibility, and emission goals.

Scientific and social impacts

- Produce new knowledge on the safety of micromobility modes.
- > Identify research gaps.
- > The **outcome** of the analysis is of high importance for:
 - Cities and transport authorities
 - Policy makers
 - Manufacturers of micromobility modes
 - Micromobility operators
 - Mobility/delivery companies with micromobility fleets
 - Road users

Future Challenges

- Crash under-reporting
 - Non-injury crashes are not always reported
 - Crashes involving micromobility modes do not correctly classify the mode type
- Common terminology as new modes evolve
- Exposure data similar to cycling, e-scooter/e-bike demand data is not available and less likely to be able to differentiate between shared and owned modes
- Regulatory framework for both private & shared micromobility modes

Micromobility Safety

Katerina Deliali, PhD

Together with: Virginia Petraki & George Yannis