

PIARC is Boosting Road Safety in LMICs – Webinar 2 Human factors/Behaviour George Yannis Professor at the National Technical University of Athens

Summary

- Human Factors Fundamentals
- Human Factors and Behavior Issues
- Human Factors Safety Measures
- Recommendations

Human Factors Fundamentals

Definition of Human Factors

- Human Factors has been a technical term since 1930s.
- The contribution of stable psychological and physiological limits of the human nature to the development of a technical dysfunction or failure in handling machines and vehicles.
- Excluding the temporary mental/physical conditions (e.g. intoxication, alcohol, age).
- Aiming the identification of road characteristics that are not according to human threshold limit values and therefore trigger accidents.

Incidents and Accidents

- Operational mistakes are reactions of drivers to misreading road features that have been there for a long time.
- Operational and driving mistakes called incidents, amount to 99.6% of all relevant traffic offences.
- Only 0.4% of operational and driving mistakes leas to accidents.

Human Factors and Behavior Issues

Behavioral Risk Factors

- 1. Speeding
- 2. Drink-driving: 5%-35% of road deaths are reported as alcohol-related
- **3. Seat-belt use:** wearing seat-belt reduces the risk of death and serious injuries among drivers and front seat occupants by 45%-50% and among rear seat occupants by 25%.
- 4. Helmet use: head injuries are the leading cause of death and major trauma for 2 and 3-wheeled motor vehicles users
- 5. Child-restraints: lead to 60% reduction in deaths
- 6. Driver fatigue

PIARC

7. Distracted driving

Despite the progress made in improving legislation across the key risk factors, **enforcement remains a major challenge** in most countries.

LMICs Risk Factors Law Enforcement Fundamentals

PIARC

Seat-Belt Law Enforcement 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Sub-Saharan Middle East & Latin America East Asia & South Asia Europe & Africa North Africa & Caribbean Pacific Central Asia ■ No ■ ENF [0-2] ■ ENF [3-4] ■ ENF [5-6] ■ ENF [7-8] ■ ENF [9-10]

Figures representing the levels of enforcement in different LMICs geographical groups. Based on the WHO Global Status Report on Road Safety 2018

Human Factors and Human Behavior Issues

Human Factors Issues	Human Behavior Issues
A road user's reaction time	Enforcement and education
Wrong directional orientation in optically unframed curves	Licensing
Reading time for symbols/texts	Intentional violation of traffic rules/speed limits
Upper limit for perception of a number of objects as a location	Pathological personal traits like anxiety
Optical illusions that lead to misperception and accidents	Driving under drugs/alcohol
Wrong responses to misguiding/irritating optical features in the field of view	Lose control because of a desease
	Impaired reaction time/ attention due to medication
	Risky behavior

Human Factors Accident Triggers

- 1. The 6-Seconds Rule: The average driver needs 4-6 seconds to adapt to a new driving requirement.
- 2. The **Field of View Rule**: the road must offer road users a **safe field of view** and pre-programme the correct choice of speed.
- 3. The Logic Rule: the road has to follow the driver's perception logic, formed by their experience and recent perceptions.

The 6-Seconds Rule

Critical locations:

- Junctions or crossings
- Access from private streets/parking places/farm tracks to main roads
- Lane losses/merges
- Bus/tram stops
- Motorway entrances/exits
- Entrance to towns/villages
- Changes from mono-functional road to a road with several mixed functions

The Field of View Rule

Critical locations:

PIARC

- Monotonous approaching sections/surroundings, e.g. planting, buildings, landscapes
- Long/far visible approaching sections before critical locations
- Asymmetrical posts of a bridge or pitched bridges advertisements
- Incorrect optical setting of outer curves: curve without setting leads to destabilization of the driver
- Non-vertical appearance of roadside objects: trees, delineators, buildings
- Structures over the road that are asymmetrical or of different height

The Logic Rule

Critical locations:

- Discontinuous bends in roads
- Multiple critical locations leading to overload of information processing
- Sharp curves, traffic signs, intersections directly after tunnels
- Direction of sign differ significantly from the perceived road course
- Traffic control devices not visible against background

Human Factors Safety Measures

Safe System Approach

- UN Second Decade of Action for Road Safety, with a goal of reducing road traffic deaths and injuries by at least 50 per cent from 2021 to 2030
- Adoption of Safe System Approach is necessary to prevent fatal and serious crashes.
- Unless roads are designed and managed to take account of human factors, it is unlikely that a Safe System can be achieved
- The road transport system needs to anticipate and accommodate for human errors and prevents
 Consequent death or serious injury

Safe System Principles

0		
Death/Serious Injury	Humans	Humans Are
is Unacceptable	Make Mistakes	Vulnerable
	0.8.0	ð
Responsibility	Safety is	Redundancy
is Shared	Proactive	is Crucial

Safe Road Use Measures

Enact and enforce road safety legislation

- Set maximum **speed limits** considering the type and function of roads.
- Establish **blood alcohol concentration** (BAC) **limits** to prevent impaired driving (drink- and drugdriving) with specific provisions for novice and professional drivers.
- Mandate the use of protective equipment (safety belts, child restraints and helmets).
- Restrict the use of handheld electronic devices while driving.
- Establish a **dedicated enforcement agency**, provide training and ensure adequate equipment for enforcement activities
- Ensure road infrastructure takes account of the needs of all road users and is designed to facilitate safe behaviors, including:
 - clear **road signage** and road markings that are intuitive;
 - use of roundabouts and **traffic calming designs** such as speed humps;
- physical separation of road users including use of protected bicycle lanes and pedestrian only zones

The 6-Seconds Rule Countermeasures

Policy	Measures
Don't surprise the driver! Ensure the perception and visibility of the critical location by road alignment and design allowing unobstructed view of the critical location.	 Remove visual obstacles such as crests, curves, vegetation and buildings prior to critical location Construct traffic islands.
Ensure visibility by corrective measures! Implementation of treatments guiding driver's attention directly to the critical driving demand.	 Use attention guiding visual clues such as colored areas, pavement changes and special markings.
Give advice by warning measures! Forewarn and seek to change driver's programme by installing traffic control devices.	 Install speed limits Prohibit overtaking Set up warning signs

The Field of View Rule Countermeasures

Policy	Measures
Design the field of view! Remedy the identified deficits in the field of view by design	 Create sinuous road alignment against monotony Create symmetry of superstructures by constructive measures
Correct the field of view! Permanently remedy the identified deficits in the field of view by improving the optical guidance	 Use eye-catching objects, Create complete setting of outer curves Cover non-parallel optical guiding lines that lead to optical illusions
Place warnings in the field of view! Address the identified deficit in the field of view by signs and instructions	Install speed limitsBan overtakingSet up warning signs

The Logic Rule Countermeasures

Policy	Measures
Design logical road sections! Ensure early visibility and clear comprehension of critical locations, including parking lot exits, entrances and other gateways.	 Avoid logical breaks in sections with the same function Indicate change of function by change of alignment, cross section and roadside facilities
Correct illogical road sections! Announce critical locations early enough by special road surfacing, changes of road's course	Use special road surfacing such as colored areas, pavement changes and special markings to indicate critical locations
Place warnings in illogical road sections! Forewarn drivers of the logical inconsistencies by traffic control devices and instructions	 Install speed limits Ban overtaking Set up warning signs

Human Factors Method

Safety evaluation based on Human Factors Method

- Special on-site inspections made by an interdisciplinary team of designers, safety engineers and Human Factor experts, following a specific inspection protocol.
- Checking the compliance with road standards
- Visit the location under different weather and lighting conditions or when accident occurred
- Inspection at network level to identify safety deficiencies

Inspection at high accident concentration sections

Human Factors' Evaluation Tool

- Outcome of the Human Factors' Method is the determination on a Human Factors Evaluation
 Score of the location, representing the percentage rate in which the locations fulfil the Human Factors demands.
- The HF_Score can be determined using the tool developed by PIARC; Human Factors – Evaluation Tool for the Man-Road-Interface 2017
- This tool contains validated and reliable road characteristics that cause misperceptions, driving mistakes and can result in accidents.

Recommendations

Human Factors Safety Recommendations

- Include human factors in the road design process to achieve a self-explaining road design.
- Measure based on the three classes of human-factor related triggers:
 - 1. The 6-Second Rule: a user-friendly road will allow drivers to adapt to new and unexpected situations and use signings/markings to indicate before any critical location;
 - 2. The Field of View Rule: a self-explaining road will provide drivers with a well-designed field of view with sufficient contrast, good optical guiding and orientation facilities;
 - 3. The Logic Rule: road characteristics should flow in a logical sequence; changes to the road environment should be introduced as early as possible and exclude elements that would confuse the driver.
- An improved approach to implement road safety inspections is to perform a road safety evaluation based on the Human Factors Method (RSE_HF), mainly by including human factor experts into the RSI team. This approach supports LMICs that are still at the starting phase of the road safety management process.

Relevant PIARC reports

- Road Safety Manual. Planning, Design & Operation. Roles, Responsibilities, Policy Development and Programmes
- Road Safety Manual. Planning, Design & Operation. Designing for Road Users
- Road Safety Manual. Planning, Design & Operation. Risks and issue identification
- Road Safety Manual. Planning, Design & Operation. Intervention Selection
- Proceedings of the PIARC International Seminar on: "Road Safety in Low- and Middle-Income Countries: Issues and Countermeasures"
- Proceedings of the "International Seminar and Workshop on Safer Roads by Infrastructure Design and Operation"
- Road Safety Catalogue of Case Studies
- Proceedings of the Internal Workshop "Policies and Programs for Road Safety Management"
- <u>1st Webinar on COVID-19 and Road Safety</u>
- 2nd Webinar on COVID-19 and Road Safety
- Addressing Road Safety Worldwide: Vulnerable Road Users, Human Factors & RS in LMIC
- Human Factors Guidelines for a Safer Man-Road Interface
- State of the art in road design standards. A PIARC literature review

Relevant PIARC reports

- <u>The Role of Road Engineering in Combating Driver Distraction and Fatigue Road Safety Risks</u>
- Road Safety Evaluation based on Human Factors Method
- Land use and Safety: An introduction to understanding how land use decisions impact safety of the transportation system

Thank you for your attention!

George Yannis

Professor NTU Athens

geyannis@central.ntua.gr

World Road Association (PIARC) Grande Arche – Paroi Sud – 5°étage 92055 – La Défense Cedex – France

www.piarc.org

