metaCCAZE

Flexibly adapted MetaInnovations, use cases, collaborative business and governance models to accelerate shared Zero Emission mobility for passengers and freight

Evi Koliou

Transportation Engineer, PhD

Together with: George Yannis

Department of Transportation Planning and Engineering National Technical University of Athens

Artificial Intelligence for Road Safety and Mobility Workshop

8th UN Global Road Safety Week

Athens, 15 May 2025

The metaCCAZE project

> metaCCAZE:

"Flexibly adapted MetaInnovations, use cases, collaborative business and governance models to accelerate shared Zero Emission mobility for passengers and freight".

metaccaze-project.eu/

> Partners:

44 partners from 12 EU countries involving National Technical University of Athens

Duration of the project:

48 months (January 2024 - December 2027)

> Framework Program:

This project has received funding from the Horizon Europe programme under grant agreement No 101139678.

Background

- ➤ Over 70% of EU citizens live in cities which generate 23% of all transport greenhouse gas emissions. Europe wants to become the world's first climate-neutral continent by 2050.
- metaCCAZE is on a mission to revolutionise mobility in European cities, serving both passengers and freight, with innovative electric, automated, and connected solutions designed to make transportation smarter, net zero, and more efficient for all.
- ➤ But this is something we cannot do alone! That's why we collaborate, inspire and are inspired by the following initiatives.

metaCCAZE

Objectives

1

Engage

professionals and citizens to co-design zero emission shared mobility 2

Develop

scalable,
resilient
technological
solutions
combining
electrification,
automation,
and
connectivity

3

Demonstrate

zero emission shared mobility in four trailblazer cities, assessing seasonality effects 4

Transfer

solutions to six follower cities, establishing a replicable method 5

Equip markets and stakeholders with skills to adopt zero emission mobility 6

Disseminate

results to accelerate metaCCAZE solutions deployment

metaCCAZE Approach

6 metalnnovations...

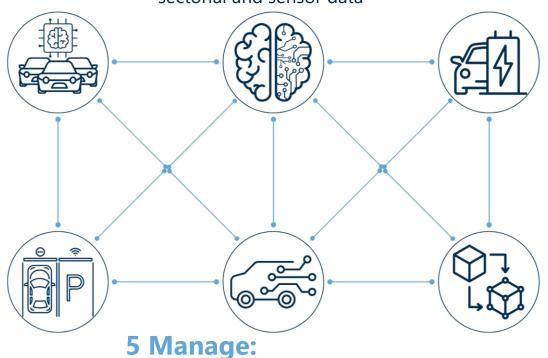
3 Charge:

Inductive and mobile

charging infrastructure

6 Digital Twin:

Planning & optimisation


...that enable combined electrification, automation and connectivity:

1 Align:

Decentralised AI to align grid-fleet-demand

2 Harmonise:

Al Data Warehouse for multisectorial and sensor data

Remote control centers for AVs & ADAS for parking and docking

4 Automate & Connect:

Al-driven (re-) scheduling tools & supply demand matching for on demand shared e-services

metaCCAZE Approach

... are infused to **10** cities services and infrastructure...

Infrastructure: Charging infrastructure, multimodal hubs for passengers and logistics, connectivity infrastructure, parking & traffic management

Services: Public transport, on-demand minibuses (electric or eAV), e-bike & e-scooter sharing, logistics: city deliveries, garbage collection

metaCCAZE Approach

...through metaDesign activities...

Actors engaged in metaDesign activities & demonstration...

...design, test and use the metaServices.

Authorities, passenger & freight transport operators, energy providers, vehicle manufacturers, infrastructure providers, telecommunications

Citizens, visitors, commuters – diverse population groups

___ social embracement & behavioural change monitoring

Expected Results

➤ Al-powered tools: Including decentralized AI for gridfleet-demand alignment, AI-enhanced decision support systems, and dynamic rescheduling tools for on-demand mobility.

MetaInnovations toolkit: A modular set of interoperable solutions to support urban mobility transitions.

➤ Al Data Warehouse: Real-time, interoperable data integration hub that supports energy, mobility, and city systems collaboration.

> Standardized impact assessment framework (~200 KPIs) and cross-city transferability frameworks.

MetaPolicy package: Guidelines and policy recommendations for future Sustainable Urban Mobility Plans (SUMP/SULP)

Streets for Life

______metaCCAZE

Trailblazer Cities

Follower Cities

metaCCAZE reimagines mobility not just through technology, but through a deep commitment to people and place. By transforming our streets into dynamic, zero-emission spaces, the project brings to life the vision of 'Streets for Life' - where safety, inclusivity, and sustainability are not ambitions, but everyday realities.

Streets for Life

City	Use Case Code	Use Case Title
Amsterdam	AM-UC01	Autonomous electric waterborne vessels for logistics
	AM-UC02	Adaptive Speed Governance of connected e-bikes
	AM-UC03	Optimizing intermodality of waste collection in the urban systems
	AM-UC04	Tradable Mobility Credits (TMC) scheme
Munich	MU-UC01	Dynamic Curbside Management (DCM)
	MU-UC02	Establishment and operation of multimodal logistics hubs
Limassol	LI-UC01	On-demand mini-buses service
	LI-UC02	Shared e-bikes
	LI-UC03	Multimodal passenger hub
	LI-UC04	Transport and Energy Platform
Tampere	TA-UC01	Autonomous e-shuttles with an advanced remote-control centre and
		inductive charging
	TA-UC02	Tram feeder service with advanced remote-control centre and
		inductive charging

Scientific and Social Impact

- Development of Al-powered mobility solutions, including real-time planning and decentralized optimization of automated fleets.
- Introduction of the MetaInnovate toolkit, fostering integration of IoT, remote sensing, machine learning, and cloud services to monitor and optimize urban infrastructure.
- Inclusive co-design and evaluation of mobility services that prioritize the needs of vulnerable groups (elderly, women, disabled, rural residents).
- Enhancement of urban governance through training, capacity-building, and stakeholder engagement to foster widespread adoption of sustainable mobility.

Future Challenges

- Institutional complexity: Need to align various public authorities and stakeholders with new governance models and business frameworks.
- User acceptance: Potential reluctance from citizens and stakeholders in adopting new mobility paradigms.
- ➤ Technical integration: Ensuring interoperability between diverse systems (e.g., Al models, data warehouses, and digital twins).
- Procurement and rollout delays: Risk of delays in acquiring and deploying technology in Living Labs.
- Data availability: Ensuring complete, timely, and usable data for feeding planning tools and Al systems

Be part of metaCCAZE!

Subscribe to our <u>newsletter</u>

Connect with us

metaCCAZE-project

@metaCCAZE

Visit our website metaccaze-project.eu

metaCCAZE

Flexibly adapted MetaInnovations, use cases, collaborative business and governance models to accelerate shared Zero Emission mobility for passengers and freight

Evi Koliou

Transportation Engineer, PhD

Together with: George Yannis

Department of Transportation Planning and Engineering National Technical University of Athens

Artificial Intelligence for Road Safety and Mobility Workshop

8th UN Global Road Safety Week

Athens, 15 May 2025

