Driving simulator experiment design for the effects of driver distraction and the assessment of driver skills

Eleonora Papadimitriou, George Yannis & Sophia Vardaki, NTUA
Sokratis G. Papageorgiou, NKUA, Medical School

TRB Annual Meeting, Washington, 16 January 2013
‘Vehicle User Characteristics Committee’
Background

- **The DISTRACT research project**
 - “Analysis of causes and impacts of driver distraction”
 - Causes: endogenous & exogenous, Impacts: driver behaviour & safety
 - Drivers from the general population, as well as drivers with altered cognition due to cerebral diseases with high prevalence: e.g. Mild Cognitive Impairment (MCI), mild Alzheimer’s Disease, Cerebrovascular disease (stroke).

- **The DriverBrain research project**
 - “Analysis of the performance of drivers with cerebral diseases” altering cognition
 - Alzheimer’s Disease, Parkinson’s disease, Cerebrovascular disease - both in their MCI (pre-dementia) stages, but also in their mild dementia stages.

- **An interdisciplinary research team**
 - Dpt. of Transportation Planning and Engineering of the NTUA
 - Dpt. of Neurology of the University of Athens (NKUA) Medical School, ATTIKON General University Hospital, Athens
 - Dpt. of Psychology, UoA School of Philosophy, Pedagogy and Psychology

- **A common simulator experiment**
Objectives

- To present our approach for the design of a driving simulator experiment which:

 - Has a twofold objective
 - impacts of driver distraction
 - assessment of driver performance and skills

 - Targets two groups of drivers
 - Drivers from the general population
 - Drivers with a mild pathological condition
Key research variables

- **Diseases & conditions targeted**
 - Parkinson’s (PD), Alzheimer’s (AD), Cerebrovascular (CVD) in their Pre-Dementia or the very Mild Dementia Stages
 - MCI due to various causes (mainly pre-dementia stage of AD)
 - In terms of driving performance, but also as ‘endogenous’ causes of distraction

- **Exogenous distraction causes**
 - Use of mobile phone (hand-held)
 - Conversation with passenger

- **Road and traffic variables**
 - Area type (urban / rural)
 - Traffic volume (low, moderate, high)
Overview of the experiment

- Sample design & characteristics:
 - Healthy drivers & impaired drivers: oversampling of ages >55 years

<table>
<thead>
<tr>
<th>Age</th>
<th>Impaired</th>
<th>Healthy</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 55</td>
<td>125</td>
<td>75</td>
<td>200</td>
</tr>
<tr>
<td>< 55</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>175</td>
<td>125</td>
<td>300</td>
</tr>
</tbody>
</table>

- Duration: 2 years
- Questionnaire on driving habits
- Medical, clinical & neurological evaluation
- Neuropsychological assessment
- Driving simulation experiment
 - Familiarisation with the simulator
 - Phase 1: Distracted driving experiment
 - Phase 2: Assessment of driver skills at operational level
Medical assessment

- **Comprehensive Clinical Evaluation** (general medical and neurological)
 - Present & past history, pharmacological treatment, life habits (alcohol consumption, smoking, etc)
 - Detailed neurological examination (neurological signs: markers for a disease)
 - Psychiatric assessment for depression, anxiety, behavioral disturbances
 - Ophthalmological evaluation: visual acuity, visual fields, fundoscopy
 - **Motor ability-tests in Fitness to Drive**: Specific clinical tests examining motor control, balance, visual fields etc. related to driving skills
Neuropsychological assessment

- **Comprehensive Neuropsychological Evaluation**
 - Tests covering a large spectrum of Cognitive Functions:
 - visuo-spatial, verbal episodic and working memory
 - general, selective and divided attention
 - reaction time
 - Processing speed, psychomotor speed

- Associated with fitness to drive:
 - MMSE: General Gognitive State
 - Clock Drawing Test
 - Hopkins Verbal Learning Test
 - Trail Making Test
 - Useful Field of View
Simulator experiment phase 1

- **Distracted driving and performance assessment experiment**
- Full factorial within-subject design
- 3 distraction conditions: none / cell-phone / conversation with passenger
- 2 road environments: divided urban arterial / undivided two-lane rural road
- 2 traffic scenarios
 - Q_M: moderate traffic conditions
 (vehicle arrivals drawn from a Gamma distribution with $m=12$ sec, $\sigma^2=6$ sec ~ $Q=300$ veh/h)
 - Q_H: high traffic conditions
 (vehicle arrivals drawn from a Gamma distribution with $m=6$ sec, $\sigma^2=3$ sec ~ $Q=600$ veh/h)

<table>
<thead>
<tr>
<th>Distraction sources</th>
<th>Road and traffic conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban area</td>
<td>Rural area</td>
</tr>
<tr>
<td></td>
<td>Q_M</td>
<td>Q_H</td>
</tr>
<tr>
<td>No distraction</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Cell phone</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Conversation with passenger</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>
Simulator experiment phase 1

- Distracted driving and performance assessment experiment
- Summary of participant trials
 - 2 blocks with 6 trials each
 - Randomized between and within block-trials
 - Incidents at fixed points

<table>
<thead>
<tr>
<th>Block</th>
<th>Trial</th>
<th>Area type</th>
<th>Time</th>
<th>Traffic</th>
<th>Distractor</th>
<th>~Length (Km)</th>
<th>~Duration (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Urban</td>
<td>Day</td>
<td>Moderate</td>
<td>None</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Urban</td>
<td>Day</td>
<td>High</td>
<td>None</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Urban</td>
<td>Day</td>
<td>Moderate</td>
<td>Cell phone</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>Urban</td>
<td>Day</td>
<td>High</td>
<td>Cell phone</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Urban</td>
<td>Day</td>
<td>Moderate</td>
<td>Passenger conversation</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>Urban</td>
<td>Day</td>
<td>High</td>
<td>Passenger conversation</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>Rural</td>
<td>Day</td>
<td>Moderate</td>
<td>None</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>Rural</td>
<td>Day</td>
<td>High</td>
<td>None</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>Rural</td>
<td>Day</td>
<td>Moderate</td>
<td>Cell phone</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>Rural</td>
<td>Day</td>
<td>High</td>
<td>Cell phone</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>Rural</td>
<td>Day</td>
<td>Moderate</td>
<td>Passenger conversation</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>Rural</td>
<td>Day</td>
<td>High</td>
<td>Passenger conversation</td>
<td>2.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total 22.2 36
Simulator experiment phase 1

- **Distracted driving and performance assessment experiment**

- Traffic scenarios
 - **Input**: Vehicle headways drawn from a Gamma distribution with a given mean and variance
 - **Output**: The specific traffic volume experienced per trial for each participant

- Quantitative indicators - Trial specific (automatically recorded)
 - Reaction time
 - Speed (& difference from mean)
 - Lateral position (& difference from mean)
 - Steering angle (& difference from mean)
 - Accident probability at specific incident
 - Urban: parked car door opening, sudden appearance of child
 - Rural: sudden appearance of animal
Simulator experiment phase 2

- **Assessment of driver skills at operational level**
- Control tasks and a working memory task that involves information presented on road signs
- Scenarios enabling assessment of drivers’ performance on control tasks and a working memory task
- 3 drives
 - Duration of experiment (phase2): ~ 12 minutes
 - Conditions of varying level of task demand:
 - Low demand
 - Moderate demand
 - High demand
Simulator experiment phase 2

- **Assessment of driver skills at operational level**
 - Driving tasks
 - Car following
 - Lane changes (driving between traffic cones)
 - Decision task
 - Quantitative indicators
 - Speed
 - Lateral position
 - Collisions
 - Qualitative indicators
 - Recall of safety information
 - Compliance to instructions
Discussion

- Contribution of the research
 - Interdisciplinary approach
 - Large sample size
 - Focus on impaired drivers
 - Endogenous and exogenous effects on driver performance
 - Detailed effects of traffic

- Challenges in the experiment design
 - Combine and balance the objectives & targets
 - Selection of key variables (medical, neuropsychological, traffic)
 - Individual assessment and population analysis
 - Efficiency: rigorous design yet manageable size
 - Effects of simulator sickness and unfamiliar technological environment
 - Need for extensive pilot-testing (in progress)
Driving simulator experiment design for the effects of driver distraction and the assessment of driver skills

Eleonora Papadimitriou, George Yannis & Sophia Vardaki, NTUA
Sokratis G. Papageorgiou, NKUA, Medical School

TRB Annual Meeting, Washington, 16 January 2013
‘Vehicle User Characteristics Committee’