Neuropsychological parameters associated with driver distraction in a driving simulator experiment: presentation of methodology and preliminary findings

A. Economou1, I. Beratìs2, M. H. Kosmìdis3, A. Liosidou2, N. Andronas2, J. Papantafyliou4, G. Yannis5, S. G. Papageorgiou2

1Department of Psychology, University of Athens, 2“Attikon” University General Hospital, Department of Neurology, University of Athens, 3School of Psychology, Aristotle University of Thessaloniki, 4IASIS Community Medical Center for the Elderly, Glyfada, 5Department of Transportation Planning & Engineering, National Technical University of Athens

aoikono@psych.uoa.gr

Background & Aims

Driver distraction constitutes a basic factor for increased risk of road accidents in Greece and internationally. It contributes to road accidents in a proportion ranging from 10% to 30% (MacEvo et al., 2007; Wang et al., 1996), and driver inattention may, together with other factors, affect up to 70% of road accidents (Dingus et al., 2006).

Herein, we present the methodology and preliminary data from a recently funded research programme, National Strategic Reference Framework (NSRF 2007-13, O.P. Thales), aiming at integrating endogenous factors (subject variables, such as demographic factors, presence of neurological disorder, etc.), with exogenous factors, such as driving area type, traffic parameters, and presence and type of distraction (mobile phone, conversation) in a driving simulator experiment. The originality of the study lies in the integration of the two sources of variance conditions.

Materials & Methods

Participants

At least 200 participants will be recruited over the course of two years: 50 young participants (ages 18-26), 60 middle aged/older participants and 90 participants with neurological disorders: Mild Cognitive Impairment (MCI), mild Alzheimer’s disease (mild AD), Parkinson’s disease (PD).

Measures

A neuropsychological battery is employed that includes, by category: Working memory: Letter-Number Sequencing, Spatial Span, Spatial Addition (WMS), Neuropsychological Assessment Battery - Driving Scenes Test; Memory: Hopkins Verbal Learning Test, Brief Visuospatial Memory Test. Visual Perception: Benton’s Judgment of Line Orientation, Witkin’s Embedded Figure Test. Executive function/processing speed: Useful Field of View, Psychomotor Vigilance Test. Personality and driving behavior questionnaires.

Experimental design

A mixed factorial design, with within-subjects factors: area type, traffic flow, and presence/type of distractor, and between-subjects factors: participant type. Traffic and distractor are fully counterbalanced for each area type.

Addition analyses examine the contribution of the other subject variables to driving performance.

<table>
<thead>
<tr>
<th>SESSION</th>
<th>AREA TYPE</th>
<th>TRAFFIC</th>
<th>DISTRACTOR</th>
<th>LENGTH (min.)</th>
<th>DURATION (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>URBAN</td>
<td>MOD</td>
<td>none</td>
<td>1.7</td>
<td>3.30</td>
</tr>
<tr>
<td>2</td>
<td>RURAL</td>
<td>HIGH</td>
<td>none</td>
<td>1.7</td>
<td>3.30</td>
</tr>
<tr>
<td>3</td>
<td>HIGH</td>
<td>CELL PHONE</td>
<td>1.7</td>
<td>3.30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MOD</td>
<td>CONVERSATION</td>
<td>1.7</td>
<td>3.30</td>
<td></td>
</tr>
</tbody>
</table>

Preliminary results

Pilot results from 13 MCI-mild AD patients, 5 PD patients, and 7 healthy controls in the rural area-moderate traffic condition with no distraction, showed that healthy drivers drove the initial road section at higher speed than patients, especially PD patients (Figure 1). Lateral position differences among the 3 groups were less pronounced (Figure 2). All groups were able to reduce speed at unexpected incidents (marked by *). Figure 1

Discussion

- From preliminary analyses, the reduced speed of driving of the patients, especially the PD patients, may indicate a compensatory strategy for motor control and planning deficits. This enables them to maintain lateral position within lane and to reduce speed at unexpected incidents.
- The integration of endogenous (subject) variables and exogenous (independent) variables permits the examination of driving simulation performance for specific types of participants, under specific conditions. The incorporation of neuropsychological, personality and medical variables will further qualify driving behavior and safety parameters.
- The results of the study will be exploited for making specific safety recommendations.

References


Department of Psychology, University of Athens, “Attikon” University General Hospital, Department of Neurology, University of Athens, School of Psychology, Aristotle University of Thessaloniki, IASIS Community Medical Center for the Elderly, Glyfada, Department of Transportation Planning & Engineering, National Technical University of Athens