A large driving simulator experiment on driver distraction of older drivers

George Yannis, Eleonora Papadimitriou, Dimosthenis Pavlou, John Golias, NTUA
Sokratis Papageorgiou, Alexandra Economou, NKUA

National Technical University of Athens
National Kapodistrian University of Athens

19-20 June 2013
Vienna
Outline

• Background
• Objectives
• Key research variables
• Overview of the experiment
• Medical assessment
• Neuropsychological assessment
• Driving simulator experiment
• Preliminary results
• Discussion
Background

• The **Distract** research project
 distrACT
 www.nrso.ntua.gr/distract
 “Analysis of causes and impacts of driver distraction”
 Causes: engodenous & exogenous, Impacts: driver behaviour & safety
 Drivers from the general population, as well as drivers with altered cognition due to cerebral diseases with high prevalence: e.g. Mild Cognitive Impairment (MCI), mild Alzheimer’s Disease.

• The **DriverBrain** research project
 driverBRAIN
 www.nrso.ntua.gr/driverbrain
 “Analysis of the performance of drivers with cerebral diseases” altering cognition
 Alzheimer’s Disease, Parkinson’s disease, Cerebrovasular disease - both in their MCI (pre-dementia) stages, but also in their mild dementia stages.

• An **interdisciplinary research team**
 - Dpt. of Transportation Planning and Engineering of the NTUA
 - Dpt. of Neurology of the University of Athens (NKUA) Medical School, ATTIKON General University Hospital, Athens
 - Dpt. of Psychology (NKUA) School of Philosophy, Pedagogy and Psychology

• A **common simulator experiment**
Objectives

• To present the design and preliminary results of a simulator experiment which:

• Has a twofold objective
 • Impacts of driver distraction
 • Performance of drivers

• Targets two groups of drivers
 • Drivers from the general population
 • Drivers with a mild pathological condition
Key research variables

• Diseases & conditions targeted
 • Parkinson’s (PD), Alzheimer’s (AD), (patients must be still able to drive)
 • Mild Cognitive Impairment (MCI), mainly pre-dementia stage of AD
 • In terms of driving performance, but also as ‘endogenous’ causes of distraction

• Exogenous distraction causes
 • Use of mobile phone (hand-held)
 • Conversation with passenger

• Road and traffic variables
 • Area type (urban / rural)
 • Traffic volume (moderate, high)
Sample design & characteristics

• Healthy drivers & impaired drivers: oversampling of ages >55 years

<table>
<thead>
<tr>
<th>Age</th>
<th>Impaired</th>
<th>Healthy</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 55</td>
<td>125</td>
<td>75</td>
<td>200</td>
</tr>
<tr>
<td>< 55</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>175</td>
<td>125</td>
<td>300</td>
</tr>
</tbody>
</table>

• Duration: 3 years
 Fall 2012 – Fall 2015 (incl. analysis)
Phases of the experiment

• Part 1. Medical, Clinical & Neurological evaluation
 Attikon General Hospital, (~1,5 hours)

• Part 2. Neuropsychological Assessment
 Attikon General Hospital, (~2 hours)

• Questionnaire on driving habits
 At home (~20 minutes)

• Part 3. Driving simulation experiment
 NTUA Driving Simulator (~1,5 hour)

• Part 1B. Medical evaluation, Part 2B. Neuropsychological Assessment
 Attikon General Hospital, (~1 hours)
Medical/neurological assessment

- **Comprehensive Clinical Evaluation** (general medical and neurological)
 - Present & past history, pharmacological treatment, life habits (alcohol consumption, smoking, etc)
 - Detailed neurological examination (neurological signs: markers for a disease)
 - Psychiatric assessment for depression, anxiety, behavioral disturbances
 - Ophthalmological evaluation: visual acuity, visual fields, fundoscopy
- **Motor ability-tests in Fitness to Drive**: Specific clinical tests examining motor control, balance, visual fields etc. related to driving skills
Neuropsychological assessment

- Comprehensive Neuropsychological Evaluation
- Tests covering a large spectrum of Cognitive Functions:
 - Visuo-spatial, verbal episodic and working memory
 - General, selective and divided attention
 - Reaction time
 - Processing speed, psychomotor speed

- Associated with fitness to drive:
 - MMSE: General Cognitive State
 - Clock Drawing Test
 - Hopkins Verbal Learning Test
 - Trail Making Test
 - Useful Field of View
Driving simulator experiment (1/2)

- 2 blocks with up to 6 trials each
- 1.7 km for each urban trial - 2.0 km for each rural trial (3.0 - 3.5 minutes on average)
- Randomized between and within block-trials
- Incidents at fixed points

<table>
<thead>
<tr>
<th>Block</th>
<th>Trial</th>
<th>Area type</th>
<th>Traffic</th>
<th>Distractor</th>
<th>Length (km)</th>
<th>Duration (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Urban</td>
<td>Moderate</td>
<td>None</td>
<td>1.7</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Urban</td>
<td>High</td>
<td>None</td>
<td>1.7</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Urban</td>
<td>Moderate</td>
<td>Cell phone</td>
<td>1.7</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>Urban</td>
<td>High</td>
<td>Cell phone</td>
<td>1.7</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Urban</td>
<td>Moderate</td>
<td>Passenger conversation</td>
<td>1.7</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>Urban</td>
<td>High</td>
<td>Passenger conversation</td>
<td>1.7</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Rural</td>
<td>Moderate</td>
<td>None</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Rural</td>
<td>High</td>
<td>None</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Rural</td>
<td>Moderate</td>
<td>Cell phone</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Rural</td>
<td>High</td>
<td>Cell phone</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>Rural</td>
<td>Moderate</td>
<td>Passenger conversation</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>Rural</td>
<td>High</td>
<td>Passenger conversation</td>
<td>2.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Total Length: 22.2 km, Total Duration: 39.0 min
Driving simulator experiment (2/2)

• Traffic scenarios
 • **Input:** Vehicle headways drawn from a Gamma distribution with a given mean and variance
 • **Output:** The specific traffic volume experienced per trial for each participant

• Quantitative indicators - Trial specific (automatically recorded)
 • Reaction time
 • Speed (& difference from mean)
 • Lateral position (& difference from mean)
 • Steering angle (& difference from mean)
 • Accident probability at specific incident
 • Urban drive: parked car enters the road, a child with a ball crosses the road
 • Rural drive: sudden appearance of animal
Preliminary results (1/5)

• Basic facts
 • Participants so far: 31 [aver. 63.6 years old (stdev 13.1), 22 males]
 • Impaired: 20 (9 MCI, 4 AD, 7 PD)
 • Control: 11
 • Duration: 15 weeks

• Simulator driving: (completed by)
 • No distraction drive: 31/31 rural area, 27/31 urban area
 • Distraction: Conversation with passenger: 30/31 rural area, 24/31 urban area
 • Distraction: Mobile phone: 9/31 rural area, 8/31 urban area (6 controls)

• Questionnaires:
 • Driving behaviour questionnaire (filled in at home)
 • Self-assessment and memory questionnaire (filled in after the experiment)
Preliminary results (2/5)

- Simulator sickness
 - Simulator sickness: 11/31 (5PD, 1AD, 3 MCI, 2 Control)
 - Soft symptoms: 5/31
 - Intense symptoms: 6/31
 - Would like to continue the driving despite the symptoms: 3/31
 - Completed only 1 or 2 trials: 4/31 (3PD, 1AD)
 - Drop out: only 1 (Intense symptoms and stop from the beginning)
Preliminary results (3/5)

Mean speed profile along the route in the rural area

(Low traffic volume, No distraction)
Preliminary results (4/5)

Reaction time at unexpected incident in **Rural area** and with **Low traffic volume**

<table>
<thead>
<tr>
<th>Reaction Time (sec)</th>
<th>Participants</th>
<th>Events</th>
<th>No distraction</th>
<th>Distraction*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy drivers</td>
<td>11</td>
<td>52</td>
<td>1,73</td>
<td>1,52</td>
</tr>
<tr>
<td>Impaired drivers</td>
<td>20</td>
<td>71</td>
<td>2,02</td>
<td>2,06</td>
</tr>
<tr>
<td>MCI</td>
<td>9</td>
<td>36</td>
<td>1,94</td>
<td>1,60</td>
</tr>
<tr>
<td>AD</td>
<td>4</td>
<td>13</td>
<td>2,32</td>
<td>3,04</td>
</tr>
<tr>
<td>PD</td>
<td>7</td>
<td>22</td>
<td>2,00</td>
<td>2,46</td>
</tr>
</tbody>
</table>

* Conversation with passenger

Mean Speed in **Rural area** and with **Low traffic volume**

<table>
<thead>
<tr>
<th>Mean Speed (km/h)</th>
<th>Participants</th>
<th>Trials completed</th>
<th>No distraction</th>
<th>Distraction*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy drivers</td>
<td>11</td>
<td>25</td>
<td>49,01</td>
<td>50,71</td>
</tr>
<tr>
<td>Impaired drivers</td>
<td>20</td>
<td>35</td>
<td>41,13</td>
<td>41,29</td>
</tr>
<tr>
<td>MCI</td>
<td>9</td>
<td>17</td>
<td>44,53</td>
<td>39,77</td>
</tr>
<tr>
<td>AD</td>
<td>4</td>
<td>7</td>
<td>37,63</td>
<td>39,31</td>
</tr>
<tr>
<td>PD</td>
<td>7</td>
<td>11</td>
<td>39,34</td>
<td>47,29</td>
</tr>
</tbody>
</table>

* Conversation with passenger
Preliminary results (5/5)

Average Lateral Position in **Rural area** and with **Low traffic volume**

<table>
<thead>
<tr>
<th>Lateral Position* (km/h)</th>
<th>Participants</th>
<th>Trials completed</th>
<th>No distraction</th>
<th>Distraction**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy drivers</td>
<td>11</td>
<td>25</td>
<td>0.77</td>
<td>0.81</td>
</tr>
<tr>
<td>Impaired drivers</td>
<td>20</td>
<td>35</td>
<td>0.82</td>
<td>0.89</td>
</tr>
<tr>
<td>MCI</td>
<td>9</td>
<td>17</td>
<td>0.82</td>
<td>0.90</td>
</tr>
<tr>
<td>AD</td>
<td>4</td>
<td>7</td>
<td>0.72</td>
<td>0.86</td>
</tr>
<tr>
<td>PD</td>
<td>7</td>
<td>11</td>
<td>0.87</td>
<td>0.89</td>
</tr>
</tbody>
</table>

* Distance from the right road board ** Conversation with passenger
Conclusions

• An interdisciplinary approach by engineers, doctors and psychologists allows for better insight on driver behaviour.

• The fundamental research challenge is the separation of the age effect from the cerebral disease effect to older driver behaviour.

• Analysis of behaviour of several driver sub-groups requires a large sample, with identical experiment conditions. The optimum number of parameters to examine should be defined.

• Analysis results from driving simulator experiments do not always represent real driving behaviour, however the relative behaviour between the different sub-groups examined can be well demonstrated.
A large driving simulator experiment on driver distraction of older drivers
George Yannis, Eleonora Papadimitriou, Dimosthenis Pavlou, John Golias, NTUA
Sokratis Papageorgiou, Alexandra Economou, NKUA

National Technical University of Athens
National Kapodistrian University of Athens

19-20 June 2013
Vienna

George Yannis, Associate Professor
geyannis@central.ntua.gr, +302107721326
www.nrso.ntua.gr/geyannis/