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Abstract 

The impact of weather conditions on traffic safety is a topic that has attracted 

considerable interest in the literature. In this research, an integer autoregressive model 

(INAR) is used to estimate the effects of weather conditions on four traffic safety 

categories: vehicle accidents, vehicle fatalities, pedestrian accidents and pedestrian 

fatalities, using 21 years of daily count data for Athens, Greece. The results suggest 

that the most consistently significant and influential variable is mean daily 

precipitation height along with its lagged value. It is found that, contrary to much 

previous research, increases in rainfall reduce the total number of accidents and 

fatalities as well as the pedestrian accidents and fatalities, a finding that may be 

attributed to the safety offset hypothesis resulting from more cautious and less speedy 

driver behaviour. Similarly, temperature increase was found to lead to increased 

accidents. 
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1. Introduction 

 

Weather conditions, such as air temperature and precipitation, are associated with 

considerable impacts on road safety, mainly through their influence on both the 

exposure and the behavior of road users. The interaction between weather effects and 

the effects of other road safety factors, including roadway, driver, vehicle and 

intervention variables on road accident frequency is certainly a complex phenomenon 

that attracts increasing attention by researchers. Stipdonk (2008) underlines that 

weather effects need to be controlled for in any multivariate analysis aiming to 

explain changes in road safety outcomes. Koetse and Rietveld (2009) further 

emphasize this need within the climate change context. 

 

Several studies included or focused on the effects of weather conditions on road 

accidents occurrence and severity, attempting to capture these often complex effects. 

A thorough review of mostly earlier studies on weather effects can be found in 

Eisenberg (2004).  

 

Weather condition data relevant to road accidents are typically recorded at the 

accident scene as the prevailing conditions during the accident. In several studies, 

weather conditions during the accident are associated with the accident outcomes 

usually through the calculation of casualty risk ratios using a control group (Ivey et al. 

1981; Brodsky and Hakkert 1988; Majdzadeh et al. 2008), and the results indicate 

increased casualty risks in adverse weather conditions. In several cases, particular 

groups of drivers such as older drivers (Baker et al. 2003), motorcyclists (Pai and 

Saleh 2008) and truck drivers (Young and Liesman 2007) are examined. Golob and 

Recker (2004) found unique profiles in terms of the type of accidents that are most 

likely to occur in different weather and traffic conditions. 

 

On the other hand, continuous time series of meteorological data are generally 

gathered by means of permanent and appropriately localized measurement stations. 

Several studies used such data for road safety analysis, within both spatial and time 

series frameworks. In the first case, the spatial distribution of road accident counts is 

associated with meteorological phenomena. Edwards (1996) and Khan et al. (2008) 

showed that the occurrence of road accidents in hazardous weather conditions 

(rainfall, fog, snowfall and wind) broadly follows the regional weather patterns for 

those conditions. Geurts et al. (2005) reported a significant spatial association of road 

accidents at hazardous locations with rainfall. Regarding accident severity, a positive 

spatial effect of fog in rural areas and a negative overall spatial effect of rainfall were 

identified (Edwards, 1998). Aguero-Valverde and Jovanis (2006) introduced 

hierarchical models with random spatial and time effects and found that rainfall may 

increase road accident frequencies.  

 

However, a large part of existing research has involved time series data that may 

capture both global and seasonal effects. These studies are summarized in Table 1; 

they range from yearly to daily analyses and from national to local level, while they 

use approaches ranging from generalized linear modeling techniques (i.e. Poisson-

family models) to advanced, dedicated time series analysis techniques. Moreover, 



several additional variables are often controlled for, such as exposure, roadway 

design, demographics and interventions.  

 

Higher temperatures appear to have a decreasing effect on accident frequencies and 

severity both at daily, weekly and monthly bases (Scott, 1986; Brijs et al. 2008). The 

hours of sunlight appear to increase road accidents (Hermans et al. 2006; Brijs et al. 

2007), while deviations from mean daily or monthly temperatures were found to 

increase road accidents (Brijs et al. 2008; Stipdonk 2008). Malyshkina et al. (2008) 

found that extreme temperatures (both low during winter and high during summer) are 

positively correlated with road accidents; on the other hand, when the monthly 

number of days with temperature below zero increases, road accidents are reduced 

possibly due to reduced exposure (Hermans et al. 2006; Stipdonk 2008). 

 

Findings regarding rainfall are extensive and quite consistent. Increased daily, 

monthly or even yearly rainfall appears to increase accident frequencies (Fridstrom & 

Ingebrigtsen 1991; Fridstrom et al. 2005; Chang and Chen 2005; Caliendo et al. 

2007). A similar effect is obtained when examining the monthly number of days with 

rainfall (Shankar et al. 1995; Keay & Simmonds 2006; Hermans et al. 2006). Brijs et 

al. (2007) proposed a rainfall intensity indicator, defined as the centimeters of rainfall 

divided by its duration, which was found to increase the daily number of accidents. 

Further, lagged effects of rainfall (and precipitation in general) are often investigated; 

Eisenberg (2004) showed that the impact of precipitation on a given day is reduced 

when precipitation was observed in the previous days. Similar to this, Brijs et al. 

(2008) found that, the longer a "dry spell" (i.e. days from the previous rainfall), the 

higher the number of accidents in rainfall. 

 

In several studies, it was possible to interpret the positive effect of rainfall on road 

accidents. Keay and Simmonds (2006) showed that increased rainfall in centimeters 

results in decreased daily traffic volume, both at daytime and nighttime, winter and 

spring. Bergel-Hayat and Depire (2004) decomposed the global effect of monthly 

rainfall in two components: a direct effect on the number of injury accidents and 

fatalities, and an indirect effect on traffic volume. In Stipdonk (2008), the indirect 

effect was confirmed, leading to a recommendation for estimating weather effects on 

road accidents under constant traffic conditions. Further, they also suggest that 

reduced traffic may lead to increased travel speeds that result in increased accident 

risk. 

 

In Table 1, one can notice that the variables used to express each meteorological 

factor are quite diverse and in a few cases different results are obtained. For example, 

temperature may express either heat or frost conditions, whereas precipitation mainly 

refers to rainfall. Depending on the specification of the variables in each case, a 

correlation between temperature and precipitation variables may be more or less 

pronounced. In general, results from previous studies are rather consistent with 

regards to rainfall effects, but somewhat less consistent with regards to temperature 

effects. It is also important to note that, although most existing studies control for 

exposure, either through traffic measurements or through a proxy measures (e.g. 

petrol sales, vehicle fleet, and so on), only in few studies are the weather effects 

interpreted through their effects on exposure.  

 



The objective of this research is to further investigate the impact of weather 

conditions on traffic safety using detailed data for daily accident, traffic and weather 

information. An integer autoregressive model (INAR) is used for the estimation of the 

effects of weather conditions on four traffic safety categories: vehicle accidents, 

vehicle fatalities, pedestrian accidents and pedestrian fatalities, using 21 years of daily 

count data for Athens, Greece. 

 

 

2. Data and Methodology 

 

2.1 The Data 

In order to meet the research objectives, a large data set of daily traffic accident and 

weather conditions was used. Daily numbers of fatalities and injury accidents were 

used, together with the number of pedestrians killed or injured in these accidents. 

These data concern the region of Athens, the capital of Greece, with a population of 

3,13 million inhabitants and an area of 411 km
2
. The daily data set refers to a 

complete 21 year period from 1.1.1985 to 31.12.2005, a total of 7670 cases.  These 

information were extracted from the database with disaggregate data maintained at the 

National Technical University of Athens based on data collected by the police and 

coded by the National Statistical Service of Greece. 

In addition, the respective weather condition data set was used, referring to mean 

daily temperature (in Celsius degrees) and mean daily precipitation height (in cm) for 

exactly the same period (1.1.1985 to 31.12.2005).  These data were extracted from the 

data file with disaggregate data of the National Observatory of Athens and concerned 

data from a meteorological station representative of the weather conditions of Athens. 

 

2.2 The Methodology 

Much of the early work on the empirical analysis of accident data was done with the 

use of multiple linear regression models; as is well known, these models suffer from 

several methodological limitations and practical inconsistencies which have been 

pointed out repeatedly in the literature (see for example Washington et al. 2003). To 

overcome these limitations, several authors used Poisson regression models which are 

a reasonable alternative for events that occur randomly and independently over time. 

The Poisson model has a number of advantages over the normal regression model 

when dealing with count data (as, for example, accident count data). First, linear 

regression assumes a normal distribution of the dependent variable, an assumption 

which does not hold with count (accident) data. The Poisson model, on the other 

hand, recognizes the discrete nature of accident counts. Second, linear regression may 

produce negative estimates for the dependent variable, which is incorrect for accident 

counts. 

In many cases during safety investigations, data are available on a time series 

dimension, i.e. the variables examined are available over a (long) period of time. A 

time series of count data is an integer value non-negative sequence of count 

observations over time. Several models for the analysis of time series of count data 

are available, but the INARMA class of models - evolved similarly to the continuous 



ARMA models – have found wide applications in many research areas.
1,2

 The most 

commonly encountered form of the INARMA model is the INAR(1) process that can 

be defined as 

.,...,2   ,1 Ttyy ttt =+= − εα o       (1) 

where { }tε  is assumed i.i.d. Poisson with ( ) 0>= λε tE  and independent of 1−ty ; 

further, as McKenzie (1985) has shown, when ( )1,0∈α  and ty  is discrete self-

decomposable, the AR(1) process is stationary. This model follows the ‘usual’ AR(1) 

model in that it explicitly models serial correlation as lags of the endogenous 

variables, but where the scalar multiplication is replaced by a binomial thinning 

operator ( )α . The operator, introduced by Van Harn and Steutel (1977), can be 

defined as ∑ =
=

y

i iuy
1

oα , where iu  is a sequence of binary random variables where 

each component i, either ‘survives’ with probability α  (i.e. )1=iu  or does ‘not 

survive’ with probability ( )α−1 . This model form makes five basic assumptions: i. 

( ) ( ) ( )
jiji uEuEuuE = ; ii. ( ) ( ) ( )titi EuEuE εε = ; iii. ( ) ( ) ( )11 −− = titi yEuEyuE ; iv. 

( ) stCov st ≠∀=  ,0εε ; and, v. ( ) ( ) ( )11 −− = tttt yEEyE εε .
3
 

A number of extensions for this basic model have been developed; these include 

general INARMA models (McKenzie, 1986; Al-Osh and Al-Zaid, 1991) and the 

INAR(p) model (Al-Zaid and Al-Osh, 1990; Jin-Guan and Yuan, 1991), while a finite 

mixture version of the Poisson regression was developed by Böckenholt (1998). 

However, among the most important developments from an empirical perspective was 

Brannas’ (1995) extension to include explanatory variables in the basic model. In the 

case of safety analyses, λ  may represent the mean monthly vehicle accident rate that 

depends on various characteristics such as weather, traffic and so on, that may in-turn 

also vary with time. Brannas (1995) suggests that explanatory variables could be 

introduced to the model as ( )1,0∈tα  and 0>tλ which, using the logistic and 

exponential distributions, can be given as ( )[ ]βx tet += 11α  and γz tet =λ .
4
 Using these 

two modifications, Eq. (1) can be rewritten as
5
 

 .,...,1   ,1 Ttyy tttt =+= − εα o      (2) 

                                                           

1
 Examples of time series model applications in the area of transportation and safety include Brijs et al. 

(2008), Levine et al. (1995), Miaou and Lord (2003), Shankar et al. (1998), Ulfarsson and Shankar 

(2003), Quddus (2007). 
2
 The Poisson AR(1) model was first developed by Al-Osh and Al-Zaid (1987) and McKenzie (1985) 

and later generalized by Brannas (1994, 1995) and Joe (1996); see Brannas and Hellstrom (2002) for a 

survey.  
3
 First and second order moments and properties for this model can be found in Brannas (1994 and 

1995). 
4
 Vectors tx  and tz  are considered fixed and β and γ are vectors of parameters to be estimated. 

5
 Moment relations for this model are given in Brannas (1995). 



In this paper we use the model of Eq. (2) to estimate the effects of, primarily, weather 

on a variety of safety measures (such as vehicle and pedestrian accidents and 

casualties) based on a data base of 21 years of accidents measured on a daily basis.
6
  

 

3. Empirical Estimation 

 

We use the model described in the previous section (Eq. (2)) to estimate integer time 

series models for 21 years of data on four incident categories: vehicle accidents, 

vehicle fatalities, pedestrian accidents and pedestrian fatalities. The independent 

variables in all models are related to weather (mean daily temperature and mean daily 

precipitation height), traffic (through proxies for day of the week) and time 

parameters (monthly and annual dummy variables).
7
 In preliminary investigations we 

examined and tested for some of the fundamental characteristics of the series; first, we 

examined the Poisson assumption for the data. In all four cases, overdispersion (over 

Poisson variance) in the data is small and the INAR(1) model can be used to describe 

the data (Böckenholt 1998 and Brijs et al. 2008).
8
 Second, we examined the 

underlying correlation structure in the data; although it may be reasonable to a-priori 

assume the existence of significant correlation between successive incident counts, we 

employed the parametric tests in Jung and Tremayne (2001) that showed the existence 

of strong low order dependence. Third, we examined the appropriateness of the 

INAR(1) specification for the model. We used the Dickey-Fuller test of a random 

walk with Poisson distributed errors and rejected the null hypothesis of non-

stationarity in favor of the stationary alternative (Hellstrom 2001); further, the tests of 

Jung and Tremayne (2001) employed in the previous step indicated the 

appropriateness of an AR process rather than an MA (Moving Average) or a mix 

ARMA process.
9
  

Estimation results for all incident types appear in Table 2 (t-stats correspond to 

coefficient estimates divided by their asymptotic standard errors). In all four models 

(one for each dependent variable), the most consistently significant and influential 

variable is mean daily precipitation height along with its lagged value. This is an 

important finding particularly as it pertains to its consistently negative sign; while 

much previous research has determined the significance of rainfall to accident 

prediction (Fridstorm et al. 1995, Eisenberg 2004, Brijs et al. 2008), most research has 

indicated that increases in precipitation lead to increases in vehicle accidents. In this 

work we find the opposite result; that is, we find that increases in rainfall reduce all 

                                                           

6
 Here we present only the essential parts of the model specification; readers interested in additional 

information including testing and estimation issues can refer to Brijs et al. (2008) for an excellent 

discussion on the topic. 
7
 It is well established that, in accident models, a measure of exposure – traffic volume most frequently 

– must be included in estimations, but we were not able to collect reliable or representative traffic data 

for our study area. However, as the literature has repeatedly indicated, day-of-the-week dummies are 

well suited for capturing variability in exposure and yield consistent estimation results and we thus use 

this approach to overcome the lack of direct exposure data (for more details on using dummy variables 

for capturing exposure variability see Brijs (2008), Martin (2002) and Levine et al. (1995)).  
8
 We note here that the INAR model used in this paper makes the assumption of Poisson marginal 

distributions and does not account for dispersion; extensions that consider overdispersion can be found 

in Karlis and Xekalaki (2001) and Gourieroux and Jasiak (2004). 
9
 We also note that as, Brijs et al. (2008) and Jin-Guan and Yuan (1991) showed, although it is 

straightforward to incorporate higher order lags into the INAR model, coefficient interpretation 

becomes complicated.  



types of incidents. Although this appears counter to what would seem logical, it may 

be attributed to the offset hypothesis by which people have an acceptance of a level of 

safety; if they feel less safe, because of rainfall in this case, then they may drive with 

lower speed and more carefully to compensate; further, this may also be a 

characteristic of Southern European drivers who are not accustomed to driving in wet 

conditions and thus become overly cautious when raining. Finally, we note that our 

findings largely support Eisenberg’s (2004) hypothesis of the existence of a 

significant lagged effect between precipitation and accidents.  

The second weather related variable we examined concerns temperature’s effects on 

incidents. Research has shown temperature to be an important factor in determining 

car accidents (Branas and Knudson 2001, Brijs et al. 2008, Fridstrom et al. 1995), 

particularly for temperatures below freezing and when combined with snow. Our 

results show mean daily temperature and its one period lag to be important 

determinants of vehicle accidents, where an increase in temperature leads to increased 

accidents; we do note, however, that our data did not contain any mean daily 

temperature readings below freezing while snowfall is very sparse. Again, the offset 

hypothesis may be an important factor in this finding. The 3-day moving temperature 

average was significant in determining pedestrian injuries (increase in average 

temperature increases pedestrian injuries); we attribute this result to the corresponding 

increase in pedestrian traffic associated with higher temperatures. 

As previously noted, lack of dependable traffic data required the use of day-of-the-

week dummy variables to capture traffic’s variability. The results indicate that, for 

most categories, incidents are higher during the weekends than during the week, with 

the exception of pedestrian fatalities which appear to be higher on Mondays. The 

same general finding applies for Fridays, with the exception of pedestrian injuries. 

Although this finding is different from previous research (see, for example, Brijs 

2008), it can be directly attributed to much higher – and higher risk - traffic during 

Friday and weekend nights.  

In estimating the models, dummy variables were used to capture some of the temporal 

characteristics in the series. The monthly dummy variables (most of which were 

statistically significant at the 90% level) indicated that, for example, vehicle accidents 

were much lower in August (when traffic is also much lower due to an extensive 

vacation period) and were higher in January and May (these results confirm monthly 

accident statistics appearing in Table 3). The annual dummy variables were largely 

statistically significant without, however, indicating a significant trend (either upward 

or downward), and were thus left in the model as individual annual dummy variables 

(in Table 3 we only mention the number of dummy variables – out of a total of 21 – 

that were not significant). Finally, for each model we estimated the MAPE (Mean 

Absolute Percent Error measured in %) and MAE (Mean Absolute Error, measured in 

number of incidents); the MAPE values range from 17.6% in the case of vehicle 

accidents to 37.3% for pedestrian fatalities. These MAPE values are rather high – 

particularly for both pedestrian models - and certainly suggest the existence of 

additional exogenous factors that affect the phenomena studied and that have not been 

included in the models. Finally, Figures 3 – 5 depict actual versus predicted values for 

some of the models (ρ is the correlation coefficient between actual and predicted 

values, while the red dotted line suggests ‘perfect’ predictions); the vehicle fatalities 

model yields predictions without an apparent ‘systemic’ problem (Figure 3), the 



vehicle accidents model yields widely varying predictions (Figure 4), while the 

pedestrian fatalities model systematically errs in predicting low number of fatalities 

(Figure 5).  

 

4. Conclusions 

 

In this paper we revisit the problem of the effects of weather on four incident 

categories: vehicle accidents, vehicle fatalities, pedestrian accidents and pedestrian 

fatalities. Independent variables used are related to weather (mean daily temperature 

and mean daily precipitation height), traffic and time. Estimation results for all 

incident types suggest that the most consistently significant and influential variable is 

mean daily precipitation height along with its lagged value. While much previous 

research has determined the significance of rainfall to accident prediction, most 

research has indicated that increases in precipitation lead to increases in vehicle 

accidents. We find the opposite result that suggests that increases in rainfall reduce all 

types of incidents. Although this appears counter to what would seem logical, it may 

be attributed to the safety offset hypothesis (less speeding, etc.) and may also be a 

characteristic of Southern European drivers who are not accustomed to driving in wet 

conditions.  

We also examined the effects of temperature on incidents. Our results show that mean 

daily temperature and its one period lag to be important determinants of vehicle 

accidents, where an increase in temperature leads to increased accidents. Again, the 

offset hypothesis may be an important factor in this finding; finally, the 3-day moving 

temperature average was significant in determining pedestrian injuries (increase in 

average temperature increases pedestrian injuries) and we attribute this result to the 

significant increase in pedestrian traffic associated with higher temperatures in 

Athens. 

It is worth noting that in this paper we accounted for temporal correlation in the 

dependent variable through a first order integer autoregressive process. We do 

however recognize that there are two important methodological issues still 

unaccounted for that should be addressed in future research; first, model extensions 

that allow for possible overdispersion in the dependent variable should be tested. 

Second, higher order autoregressive as well as integer ARMA models can be 

developed and their fit should be compared to that of existing models. 

As a final note, the effects of weather conditions on traffic accidents pass through the 

weather effects on driver behaviour and speeding and on traffic volume and its effects 

on traffic accidents. Positive and negative effects co-exist and before identifying their 

combined effects, further research is needed.  Consequently, although we used daily 

data in this paper, weather variables could also be accounted for in smaller time 

intervals and with related in-depth studies that capture the effects of, particularly, the 

intensity of the weather phenomena to driver behaviour and traffic volume and their 

impact on traffic accidents. 
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Table 3 

Monthly Incident distribution (2007) 

Month % of 

Accidents 

% of 

Casualties 

January 9.2 10.8 

February 7.2 7.5 

March 8.9 7.8 

April 7.9 6.7 

May 9.2 9.1 

June 8.2 5.6 

July 9.3 10.2 

August 6.6 8.3 

September 8.2 8.3 

October 9.0 9.1 

November 8.3 9.4 

December 8.0 7.0 

 



 

Figure 3. Actual versus Predicted diagram for vehicle fatalities 



 

 

 
 

Figure 4. Actual versus Predicted diagram for vehicle accidents 

 

 



 
 

Figure 5. Actual versus Predicted diagram for pedestrian fatalities 

 

 

 

 

 

 

 

 


