Effects of alcohol on speeding and road positioning among young drivers:
a driving simulator experiment

Zoi Christoforou
zoic@civil.ntua.gr

Matthew G. Karlaftis
mgk@mail.ntua.gr

George Yannis
geyannis@central.ntua.gr

National Technical University of Athens

Washington D.C., January 23rd
Presentation Outline

Subject

1. Alcohol and driving
2. Experimental Design
3. Data Analysis and Results
4. Discussion
Alcohol

- **Alcohol consumption:** annual death of 2.5 million people
 - either from alcohol-related diseases or
 - from accidents related to alcohol-impaired behavior

- **Alcohol and Driving:**
 - repeatedly linked to high accident rates and severities
 - associated with high external costs (rescue, hospitalization, …)
 - more dangerous among young people for all BAC ranges
 - increased risk-taking
 - sensation-seeking
 - relative inexperience with drinking, with driving, and
 with combining drinking and driving!
Driving impairment:

- difficulties in perceiving roadway information,
- exacerbating fatigue,
- slower reaction times,
- breaking distances,
- inaccurate steering,
- speeding and speed variation,
- increased lateral position variation
Driving Simulator Experiments:

- few in number despite the obvious potential
- mainly focus on combined effects (drugs, distraction, …)
- not considered differentiated BAC levels

However:

- results can offer (useful) insights!
Experimental Design

- **Participants:**
 - N=49, F(male)=53.1%
 - non-abstaining drinkers
 - mean age=23.2, SD=2.7

- **Laboratory:**
 - Department of Transportation Planning and Engineering (NTUA)
 - Driving simulator (Foerst F12PT-3L40)
 - Breath alcohol test device (Lion SD-400)
Experimental Design

Procedure:

1. Pilot Session (instruction, equipment)
2. Baseline driving session (4 minutes)
3. Questionnaire on alcohol and driving patterns
4. Alcohol ingestion (100ml of liquor over 10 minutes)
5. ‘Intoxicated’ driving session (1 hour following administration)

Predefined triggering events allowed for estimating reaction times
Experimental Design

Performance Measures:

1. Average travelling speed after intoxication
2. Speed variation after intoxication
3. Within-lane position after intoxicated
4. Variation in within-lane position after intoxicated
5. % of driving time when safety distance is kept (after intoxication)
6. Relative difference in time % of safety distance keeping after-before intoxication
Data Analysis and Results

- **Dependent Variables:**
 - Performance Measures

- **Modeling approach:**
 - Multiple linear regression

- **Hypotheses:**
 - Alcohol’s driver impairment is directly reflected on reaction time adjustment
 - Drivers choose travel speed based on reaction times, BrAC, and other personal data
 - Headway and track are indirectly ‘chosen’ by drivers with regards to other variables
 - Alcohol does not have a direct proportional effect on driving impairment; individuals react differently to alcohol in terms of resulting BrAC levels and personal attributes and driving behavior.

- **Regressors:**
 - Driver attributes
 - BAC level
 - Other simulator measurements

Effects of alcohol on speeding and road positioning among young drivers
Washington DC, January 23
Data Analysis and Results

- **Effect**: (+) positive (-) detrimental

<table>
<thead>
<tr>
<th>Variables</th>
<th>Speeding and speed variation</th>
<th>Road positioning</th>
<th>Safety distance keeping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular physical exercise</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Never drink and drive</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Previous accident involvement</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>BrAC</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>BrAC3/1 values</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Reaction Time</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Self-reported fatigue</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximated actual fatigue</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Reported ‘excellent’ driving skills</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Actual baseline driving performance</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Effects of alcohol on speeding and road positioning among young drivers
Washington DC, January 23
Data Analysis and Results

- **Major Findings:**

 - Variables related to weight, age, and sex were not found to be significant
 - Significant differentiations across individuals regarding driving performance while intoxicated
 - Behavioral patterns regarding drinking, driving, and driving after drinking significantly affect driving performance when intoxicated
 - Crucial factor: baseline driving behavioral patterns

Effects of alcohol on speeding and road positioning among young drivers

Washington DC, January 23
Discussion

✓ Faster alcohol absorption is associated with better driving performance regardless of absolute BrAC level

✓ BrAC-speed curve not monotonic over the BrAC intervals considered

✓ Driver reaction time while intoxicated: a robust impairment indicator

Limitations:

• sample size,

• low BrAC levels,

• inherent shortcomings of driving simulators…
Thank you for your attention.