

Effects of alcohol on speeding and road positioning among young drivers: a driving simulator experiment

Zoi Christoforou

zoic@civil.ntua.gr

Matthew G. Karlaftis

mgk@mail.ntua.gr

George Yannis

geyannis@central.ntua.gr

National Technical University of Athens

Presentation Outline

Subject

- 1. Alcohol and driving
- 2. Experimental Design
- 3. Data Analysis and Results
- 4. Discussion

Alcohol

- Alcohol consumption: annual death of 2.5 million people
 - either from alcohol-related diseases or
 - from accidents related to alcohol-impaired behavior

• Alcohol and Driving:

- repeatedly linked to high accident <u>rates</u> and <u>severities</u>
- associated with high external costs (rescue, hospitalization, ...)
- more dangerous among <u>young people</u> for all BAC ranges
 - increased risk-taking
 - sensation-seeking
 - relative inexperience with drinking, with driving, and

with combining drinking and driving!

Alcohol and Driving

Driving impairment:

- difficulties in perceiving roadway information,
- exacerbating fatigue,
- slower reaction times,
- breaking distances,
- inaccurate steering,
- speeding and speed variation,
- increased lateral position variation

Alcohol and Driving

Driving Simulator Experiments:

- few in number despite the obvious potential
- mainly focus on combined effects (drugs, distraction, ...)
- not considered differentiated BAC levels

however:

results can offer (useful) insights!

Experimental Design

Participants:

- N=49, F(male)=53,1%
- non-abstaining drinkers
- mean age=23.2, SD=2.7

Laboratory:

- Department of Transportation Planning and Engineering (NTUA)
- Driving simulator (Foerst F12PT-3L40)
- Breath alcohol test device (Lion SD-400)

Experimental Design

Procedure:

- 1. Pilot Session (instruction, equipment)
- 2. Baseline driving session (4 minutes)
- 3. Questionnaire on alcohol and driving patterns
- 4. Alcohol ingestion (100ml of liquor over 10 minutes)
- 5. 'Intoxicated' driving session (1hour following administration)

Predefined triggering events allowed for estimating reaction times

Experimental Design

Performance Measures:

- 1. Average travelling speed after intoxication
- 2. Speed variation after intoxication
- 3. Within-lane position after intoxicated
- 4. Variation in within-lane position after intoxicated
- 5. % of driving time when safety distance is kept (after intoxication)
- 6. Relative difference in time % of safety distance keeping after-before intoxication

Data Analysis and Results

Dependent Variables:

Performance Measures

Regressors:

- Driver attributes
- BAC level
- Other simulator measurements

Modeling approach:

Multiple linear regression

Hypotheses:

- alcohol's driver impairment is directly reflected on reaction time adjustment
- drivers choose travel speed based on reaction times, BrAC, and other personal data
- headway and track are indirectly 'chosen' by drivers with regards to other variables
- alcohol does not have a direct proportional effect on driving impairment; individuals react
 differently to alcohol in terms of resulting BrAC levels and personal attributes and driving behavior.

Data Analysis and Results

Effect: (+) positive (-) detrimental

Variables	Speeding and speed variation	Road positioning	Safety distance keeping
Regular physical exercise	-	+	
Never drink and drive	_	_	
Previous accident involvement		+	+
BrAC	+	+	
BrAC3/1 values			-
Reaction Time	-	-	-
Self-reported fatigue	+		
Approximated actual fatigue	-	-	
Reported 'excellent' driving skills	+		+
Actual baseline driving performance	+	+	+

Data Analysis and Results

Major Findings:

- Variables related to weight, age, and sex were not found to be significant
- Significant differentiations across individuals regarding driving performance while intoxicated
- Behavioral patterns regarding drinking, driving, and driving after
 drinking significantly affect driving performance when intoxicated
- Crucial factor: baseline driving behavioral patterns

Discussion

- ✓ Faster alcohol absorption is associated with better driving performance regardless of absolute BrAC level
- ✓ BrAC-speed curve not monotonic over the BrAC intervals considered
- ✓ Driver reaction time while intoxicated: a robust impairment indicator

Limitations:

- sample size,
- low BrAC levels,
- inherent shortcomings of driving simulators...

Thank you for your attention.