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ABSTRACT 
High resolution riding data from a large-scale Power Two Wheeler's (PTW) 
naturalistic driving experiment are exploited in order to identify critical riding 
patterns emerging at the beginning and during an incident. A two-step analysis is 
adopted: first, a clustering approach is undertaken in order to reveal the critical rider’s 
actions at the beginning and during an incident. Second, the revealed actions are 
associated to specific riding situations in order to identify the critical riding patterns. 
Both methodological steps are modeled using Bayesian Networks. Results reveal 
three different prevailing riding actions for describing the onset of an incident and an 
equal number of actions that a rider executes during the course of an incident to avoid 
a crash. Furthermore, the proposed methodology efficiently relates the observed sets 
of actions with the different riding incidents and produce riding patterns (moving or 
stationary obstacle, overtaking and opposing traffic) that are characterized by 
different initial actions, as well as by different rider’s action likelihood during the 
incident. 

 
Keywords: naturalistic driving, road incidents, riding behavior, power two wheelers, 
cluster analysis, Bayesian networks 
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INTRODUCTION 
Risky rider’s behavior has been for long a critical consideration in Power Two 
Wheelers’ (PTW) safety. The majority of research attempts focus on demystifying the 
riding behavior in critical riding situations in order extract useful knowledge on the 
manner PTW users react to internal of external stimuli and develop efficient 
countermeasures for PTW safety; attempts range from macroscopic and in-depth 
analyses of PTW accident datasets based on police reports or queries (1-6) to 
advanced riding simulator experiments that target the continuous and microscopic 
monitoring of riders’ behavior (7-10). The limitation of police reports and queries is 
that riders/drivers involved in accidents usually – intentionally or unintentionally – 
provide police with misleading information, as well as little accurate information on 
the pre-crash conditions (11). As for simulators, although they provide a setting for 
studying in detail the reaction of riders during extreme situations, they hardly can 
claim similarities to reality, especially with regards to the dynamics of PTWs that are 
very difficult to replicate (10).  

Recently, PTW riding studies have been supported by significant 
technological advances that enable the efficient, least intrusive and continuous 
monitoring and recording of data on the manner a rider behavior on its own physical 
environment, the road. Experiments of such a technological depth known as 
naturalistic embed high resolution video recorders, sensors and data storage units that 
may efficiently monitor and record every activity of the rider, such as brake 
activation, steering, speed, acceleration, yaw and so on. Although some naturalistic 
experiments have been conducted in Europe, the US and Australia to understand 
driver behavior (12-14), so far no quantitative results are publicly available 
concerning rider behavior and especially regarding the prevailing riding behaviors 
observed at the occurrence of an incident (12),(15),(16). This information may be 
considered as critical in order to demystify the manner a rider reacts to and internal or 
external stimulus.  

In all relevant approaches documented so far, some shortcomings regarding 
the detection and identification of reactions of PTW riders can be found. All studies 
implement typical fixed driving/riding parameters’ thresholds – regardless of the type 
of rider and the type of area or other roadway of rider characteristics- and, based on 
those values, the incidents are extracted and further analyzed (11),(17). This technique 
lacks consistency with the fact that each driver/rider has its personal stock of values, 
ideas, beliefs and practices, reflecting rigorously on its behavior on the road, such as 
the braking, overtaking and so on, that may not converge to a “typical rider’s 
behavior.” This leads to a different definition of the notion “incident” for each driver. 
Furthermore, the use of fixed thresholds to identify critical incidents severely biases 
the riding behavior that may be associated with the occurrence of a specific incident. 
Recently, a statistical approach to detect critical incidents from a multivariate set of 
riding parameters that define the riding characteristics of a specific rider has been 
proposed (18); “incidents” are defined as those situations that the rider’s actions 
deviate from his mean riding behavior. The mean behavior and its deviation are 
defined in relation to changes of the braking, wheel speed, steering and throttle. 
Although, causalities could not be established, this methodology is a first attempt to 
automatically detect irregularities and critical incidents from a vast amount of 
complex and high resolution naturalistic riding data. 

Moreover, until now little is known on the manner a rider reacts to the 
emergence of a critical incident. More specifically, there is no knowledge coming 
from data collected on the interrelations between braking, speeding and maneuvering 
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under different riding or roadway conditions. The present paper proposes a 
methodology for identifying the riding behaviors that arise at the emergence of a 
critical incident based on high resolution monitored riding data (100Hz) from a 
naturalistic driving experiment, consisting of information on wheel speed, 
acceleration, throttle, steering, braking and so on. The proposed approach is based on 
Bayesian Networks and aims at clustering the critical incidents’ characteristics in 
order to reveal typical riding behaviors in the emergence and during a critical 
incident.  

METHODOLOGY 
A fundamental research question related to identifying criticalities in riding behavior 
is whether there is a way to relate critical riding actions and relate them to specific 
riding situation (incidents). In this paper, this question is treated in two steps. First, it 
is assumed that, at the emergence of an incident, the rider performs a far from typical 
(mean) riding action that is followed by a set of sequential actions during the incident 
in order to avoid crash. For this step, a clustering approach is undertaken in order to 
reveal the critical rider’s actions at the beginning and during the occurrence of an 
incident. In the second step, the revealed actions are further associated to specific 
riding situations, for example overtaking, avoiding stationary obstacle and so on, 
taking into consideration the uncertainties arisen form the manner the rider will react 
to each situation.  

Both methodological steps are modeled using Bayesian Networks (BNs). A 
Bayesian network , ,BN K L= Θ  is a directed acyclic graph ,K L  of k K∈  nodes 
that represent the ix  random variables of the network (19). Nodes are connected by 
links l L∈  that describe the probabilistic relationship between interconnected nodes; 
this relationship is quantified using a conditional probability distribution iθ ∈Θ  for 
each node ik  (Friedman et al. 1997): ( )

ii xi
B i xx

P xθ
Π

= Π , where Π
ix ιΧ

Π ∈ , where Π
ιΧ
 

stands for the set of parents of iX  in the network. Independency between variables is 
denoted by the lack of a link. A BN defines a unique joint probability distribution 
over X given by (20): 

 ( ) ( )1
1 1

( ,..., )
i ii

n n

B n B i x i xi
i i

P x x P x xθ Π
= =

= Π = Π∏ ∏  (1) 

 BNs are powerful in handling incomplete data and uncertain phenomena. 
Moreover, due to their probabilistic nature, they can easily integrate both qualitative 
information and quantitative information in modeling. BNs have been successfully 
applied to traffic analysis and forecasting (21-22) incident detection (23). 

The BN can act as a classifier; given the characteristics ix ∈X  as inputs (for 
example the riding parameters) and a set of classes Z (for example the riding 
situations), a new unclassified observation S can be assigned to a class by the rule 
(20): 

 ( )1
1

( ,..., ) arg max ( )
n

n n i
i

classify x x p z p x z
=

= ∏  (2) 

A BN can be also used as a clustering model. Clustering is a task to partition the 
objects in the dataset D into clusters of similar objects. By using BN, each object with 
attributes x may be classified to its most probable cluster (class) *k , based on the 
estimated parameters iθ , by using a membership probability as a score (unsupervised 
classification): 
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Parameters are learnt via an Expectation-Maximization algorithm (24). 
The amount of information flow between two nodes ix  and jx  can be 

measured by mutual information. The mutual information ( ),i jI x x  between variables 

ix  and jx measures the expected information gained about xj, after observing the value 
of the variable xi (20): 

 ( ) ( ) ( )
( ) ( ),

,
, , log

i j

i j
i j i j

x X x X i j

P x x
I x x P x x

P x P x∈ ∈

= ∑    (4) 

 The mutual information between two nodes can tell us if the two nodes are 
dependent and if so, how close their relationship is. The information flow with respect 
to the set of “evidence” variables (condition-set), in this case the Class membership Z 
( ),i jI x x z  is given by conditional mutual information (20): 

 ( ) ( ) ( )
( ) ( ), ,

,
, , , log

i j

i j
i j i j

x X x X z Z i j

P x x z
I x x z P x x z

P x z P x z∈ ∈ ∈

= ∑  (5) 

 The learning procedure is based on quantifying the amount of information 
stored in each link of the network. First, an initial structure of the BN is developed 
and then the relationships are learnt. Structure evolves nodes dependencies and 
strength according to the mutual information (19). 

THE EXPERIMENT 
Analyses are based on the data collected from a large scale naturalistic riding 
experiment conducted in the city and at the suburbs of Volos, a medium scale Greek 
city, during the period November 2010 - April 2011. The specific experiment is 
conducted using a BMW F650 Funduro. The available signals that are being stored 
are summarized in Table 1. Moreover, video installation is available and calibrated to 
capture the frontal environment (a minimum of 90° field of view) and the rider’s face. 
The data acquisition of all signals is set to be recorded at an accuracy of 100Hz except 
for video signals which are sampled at 10Hz and GPS position which can be sampled 
at 1Hz (values indicate minimal requirements). Details on the experiment can be 
found in (26). 

Data selected for further study encompass trips of 20 minutes duration made 
during a period of three months by one rider in rural two-way roads. The specific 
route has shoulder width less than 1,2m, rolling terrain and high curvatures, mixed 
traffic conditions, not equally distributed traffic across the two directions, a 
significant number of uncontrolled access points and several zones where passing is 
permitted; this setting seems to be challenging for PTW riders in terms of riding 
patterns’ complexity and difficulty in maneuvering. All trips were made in daylight 
with good visibility and fine weather conditions. The final dataset consists of 56 trips 
of 20 minutes duration, meaning a set of time series of riding parameters with 
6.72∙106 data. No crashes occurred during the experiment. 
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TABLE 1: The list of monitored variables and their description. 

Variable Description 
Longitudinal acceleration (g) 

Linear acceleration (three components) Lateral acceleration (g) 
Vertical acceleration (g) 
Speed (km/h) Longitudinal speed 
Yaw rate (deg/s) 

Roll, yaw and pitch angles and rates Pitch rate (deg/s) 
Roll rate (deg/s) 
Throttle (%) Throttle position 
Brake Rear (%) Brake pressure rear 
Steering (%) Steering angle 
Brake activity Front (0/100) Brake activation front 
Brake activity Rear (0/100) Brake activation rear 
Wheel Speed (km/h) Speed of the rear wheel 

 
Based on a similar dataset, previous research has found that steering, throttle, 

brake activation and wheel speed are the optimum set of parameters in order to 
effectively detect the critical incidents, meaning situations with increased probability 
of leading to an accident, whereas the inclusion of traffic related variables have been 
found less influential in detecting incidents (18). The detection of critical incidents 
was based on a robust outlier detection methodology based on the Mahalanobis 
distance id  defined as (Barnett and Lewis 1994): ( ) ( )1ˆ ˆi i id x S xµ µ−= − − , where, 

1( ,..., ),  1,...,i i ipX x x i n= =  is the multivariate space of p riding parameters that 

independently come from a multivariate normal distribution 2( , )X N µ σ= , where µ  
is the mean and σ  is the covariance matrix, µ̂  and 1S −  are the sample mean and 
covariance matrix respectively (25). The Mahalanobis distance can be approximated 
by an F-distribution[ ] ,( )( ) / ( ) p n pp n l n l n n p F −− + − ; at a significance level α, a 
determination as to whether a new observation iX  can be considered as outlier – 
critical incident - or not can be made based on the following formula:

[ ] ,( )( ) / ( )i p n pd p n l n l n n p F −≤ − + − .  
For a given rider, the above algorithm may distinguish between typical – mean 

– riding patterns and irregular – far from the mean – riding behavior. An example of 
the riding incident detection methodology is seen in Figure 1 where the temporal 
evolution of the distance metric id  is depicted; as can be observed, a large deviation 
from the mean signifies the onset of a critical incident. The larger the deviation the 
greater the change of the rider’s riding style. Moreover, by this method, the duration 
of the event may be also measured as the time difference between the first deviation 
of distance metric from the mean value and the return to the mean riding pattern. 

The specific detection methodology provides information in the form of joint 
consideration of steering, activation brake (front, rear), throttle and wheel speed for 
both the initial riding conditions at the occurrence of an incident, and the riding 
conditions during and incident. The initial conditions at the occurrence of an incident 
refer to a single action that is undertaken by the PTW rider as an immediate reaction 
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to a stimulus, whereas the conditions during the evolution of an incident may 
encompass more than one action undertaken by the rider in order to prevent an 
accident. In the latter case the sequence of rider’s actions may play an important role. 

 
FIGURE 1: An example of a detected incident using the Mahalanobis distance metric that 
encompasses joint information on throttle, steering, braking activation and wheel speed.  

 
Figure 2 depicts the distributions of all available data; as can be observed the 

distribution of the values of the available parameters may significantly vary between 
the beginning and during the observed incident. 

 
 Throttle (%) Steering (%) Front brake 

activation (0/100) 
Rear brake 

activation (0/100) 
Wheel Speed 

(kph) 
Mahalanobis 

distance 
Beginning of 
an incident 

      
During an 
incident 

      
FIGURE 2: The distributions of the available variables for modeling.  
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IDENTIFYING CRITICAL RIDER ACTIONS 
For each incident phase – beginning and during the incident - a BN clustering model 
is constructed in order to reveal groups of critical riding actions with respect to the 
riding characteristics defined by steering, braking, throttle and wheel speed. By 
critical, we mean the different actions that the rider engages at the beginning and 
during a critical incident. The trained BNs are able to produce clusters with 68% and 
72% purity respectively; the relative high purity signifies that all clusters produced 
contain mainly cases from a sole class of actions and not from multiple classes of 
riding actions.  

Results are summarized in Table 2 and Table 3 for the beginning and during 
an observed incident respectively. The profile of each cluster is established based on 
the binary relative significance, meaning the ratio between the mutual information 
brought by each variable and the greater mutual information; 

{ }
mutual information

max mutual information
i

i

, 1,2,...,i n=  where n is the number of variables describing 

riding. Moreover, for each influencing variable, its modal value, meaning the most 
probable value with respect to the response variable and its observed state; this modal 
value comes with its probability. 
 
TABLE 2: Results from clustering for the initial conditions at the occurrence of an incident. 

Node Binary mutual 
information (%) 

Binary relative 
significance 

Modal Value1 

S1 (58.78%) 

Rear Brake Activation (0/100) 55.05% 1.00 100 100% 

Front Brake Activation (0/100) 41.51% 0.75 0 100% 

Throttle (%) 21.32% 0.39 <=2.47 (1/4) 81% 

Steering (%) 15.81% 0.29 <=0.42 (3/4) 81% 

Wheel Speed (kph) 4.35% 0.08 <=49.743 (2/4) 33% 
S2 (21.56%) 

Front Brake Activation (0/100) 73.12% 1.00 100 100% 

Wheel Speed (kph) 23.47% 0.32 <=33.45 (1/4) 57% 

Throttle (%) 18.31% 0.25 <=2.47 (1/4) 100% 

Rear Brake Activation (0/100) 7.61% 0.10 0 57% 

Steering (%) 4.64% 0.07 <=0.42 (3/4) 57% 
S3 (18.66%) 

Throttle (%) 79.25% 1.00 <=16.69 (3/4) 50% 

Rear Brake Activation (0/100) 27.39% 0.34 0 83% 

Steering (%) 14.78% 0.19 <=0.42 (3/4) 50% 

Wheel Speed (kph) 11.45% 0.14 >65.91 (4/4) 50% 

Front Brake Activation (0/100) 0.78% 0.01 0 67% 
1 Values in the parentheses are the ranges of variable discretization the modal value belongs to. 
 

As seen in Table 2, the clustering revealed three distinct groups of riding 
actions associated with the prevailing conditions at the occurrence of an incident. In 
each group of actions, the independent variables are ranked in a different manner, 
indicating that variables’ influence in the various groups of actions is different. The 
group S1, encompassing the 59% of sample actions, reveals that the rider, at the 
beginning of an incident, activates the rear brake in medium speed, executing a minor 
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maneuver. In this group, the most influential variable are the rear and front brake 
activation, followed by throttle and steering; wheel speed seems to be least influential.  
TABLE 3: Results from clustering for the riding actions during a detected incident. 

Node Binary mutual 
information (%) 

Binary relative 
significance 

Modal Value1 

C1 (43.65%) 

Steering (%) 24.32% 1.00 <=1.84 (3/4) 86% 

Rear Brake Activation (0/100) 21.53% 0.89 100 96% 

Throttle (%) 15.13% 0.62 <=5.56 (1/2) 99% 

Wheel Speed (kph) 11.45% 0.47 <=55.61 (3/4) 47% 

Front Brake Activation (0/100) 0.60% 0.03 100 71% 
C2 (36.98%) 

Steering (%) 73.21% 1.00 <=-0.94 (2/4) 52% 

Wheel Speed (kph) 54.71% 0.75 <=19.12 (1/4) 53% 

Front Brake Activation (0/100) 19.69% 0.27 100 95% 

Throttle (%) 13.24% 0.18 <=5.56 (1/2) 100% 

Rear Brake Activation (0/100) 0.94% 0.01 100 77% 
C3 (19.37%) 

Throttle (%) 78.40% 1.00 >5.56 (2/2) 91% 

Rear Brake Activation (0/100) 61.63% 0.79 0 100% 

Front Brake Activation (0/100) 51.62% 0.66 0 99% 

Wheel Speed (kph) 37.13% 0.47 <=55.61 (3/4) 91% 

Steering (%) 22.76% 0.29 <=1.84 (3/4) 98% 
1 Values in the parentheses are the ranges of variable discretization the modal value belongs to. 
 

In the S2 group (22% of sample), the rank order is different; front brake 
activation is the prevailing variable, in terms of influence to the knowledge of the 
dependent variable’s state (S2), followed by wheel speed, throttle and rear brake 
activation; in the second group of actions at the beginning of the incident, steering is 
the least influential variable. Actions belonging to the S2 group show that the rider 
most likely will use the front brake in low speed, again by executing a minor 
maneuver. Finally, there is a third group S3 (19% of cases) where throttle ranks first in 
terms of influence to the target variable S3, followed by rear brake activation, steering 
and wheel speed; the front brake activation is not significant. Actions belonging to the 
S3 group characterize accelerations in high speed where the rider executes a minor 
maneuver; brakes are not activated. A more thorough look at the results show that, 
although S1 and S2 cannot be easily intuitively assigned to specific riding situations, S3 
seems to be a characteristic action met in overtaking, as the rider suddenly accelerates 
in high speed and executes a minor maneuver. 

Similarly, rider’s actions during an incident can be clustered into three groups 
(Table 3). The first group C1 encompassing the highest percentage of cases (44%) is 
more influenced by steering, rear brake activation, throttle and wheel speed rather 
than the front brake activation. This means that C1 encompasses actions during which 
the rider executes a minor maneuver, while brakes are activated in medium speeds. In 
the second group C2 (37% of cases), as in the case of C1, steering is again critical, but 
wheel speed is more influential than braking. Moreover, front brake rather than rear 
brake is more influential. C2 describes actions there the rider executes a minor 
maneuver in very low speed when both brakes are activated. Finally, C3 is strongly 
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related to throttle and the non-activation of both brakes, whereas wheel speed and 
steering is less influential. This means C3 involves actions where the rider accelerates 
in medium speed.  

Interestingly, although Si set of actions uniquely appear in each incident (each 
incident have one appearing Si action), an incident will most likely involve more than 
two actions Ci actions during its evolution. The manner S1 and Ci are related, as well 
as the manner a sequence of actions Ci during an incident may be formed with respect 
to the type of incident will be further investigated in the next section. 

PREVAILING RIDING ACTIONS OF RIDING INCIDENTS 
Bayesian classifier is developed in order to relate each riding action at the beginning 
of an incident to the specific incident categories, as well as the actions to follow 
during the incident. Table 4 shows the data specifications with respect to the 
dependent variable and independent variables. As can be observed, the dependent 
variable is an incident categorization and is general enough to encompass a significant 
amount of situations met by PTW riders on roads. The dependent variable results 
from observing all detected incidents through video recordings. As independent 
variables, apart from the action taken at the beginning of the incident (Start), four 
other variables are considered. The first three are binary variables {0,1} and refer to 
whether the action C1, C2 or C3 has been observed during the incident. The fourth 
variable quantifies the number of actions a rider may do during a specific incident. 
 
TABLE 4: Data specification for the BN classifier. 

Independent Dependent 
Start (S1, S2, S3) 
Nr of actions (1, 2,…) 
Action C1 (0 if no, 1 if yes) 
Action C2 (0 if no, 1 if yes) 
Action C3 (0 if no, 1 if yes) 

Incident Category 
• Stationary obstacle, 
• Moving obstacle, 
• Overtake, 
• Opposing Traffic. 

 
The Bayesian classifier developed can use the associated data (steering, 

throttle, front/rear brake activation and speed) for the prediction incident type with 
relative high precision (function of the number of correct predictions of the target 
variable) of 82%. Results on the discovered associations are seen in Table 5 with 
respect to the binary relative significance (

{ }
mutual information

max mutual information
i

i

, 1,2,...,i n=  where 

n is the number of variables describing traffic conditions) of each input variable to the 
knowledge of the transitions and the modal value. Table 5 summarizes the 
classification results.  

As seen in Table 5, in incidents involving moving obstacles or opposing traffic 
the rider, at the beginning of the incident, will most likely activate the rear brake in 
medium speed, executing a minor maneuver (S1). The riders will then conduct on 
average 2 actions to avoid a crash, with the prevailing action being C2, which is to 
activate both brakes and conduct a minor maneuver in very low speed.  
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TABLE 5: Results from associating the type of the incident with specific riding actions at the 
occurrence and during the incident. 

Node Binary relative 
significance 

Modal Value Node Binary relative 
significance 

Modal Value 

Moving Obstacle (28.57%) Opposing Traffic (28.57%) 
Start 1 S1 90% Start 1 S1 90% 
Actions 0.542 2 40% C1 0.843 0 100% 
C3 0.067 0 90% Actions 0.768 1 70% 
C2 0.014 1 70% C2 0.180 1 80% 
C1 0.008 0 80% C3 0.074 0 90% 

Stationary Obstacle (28.57%) Overtake (14.29%) 
Start 1 S2 60% Start 1 S3 80% 
Actions 0.518 2 70% C3 0.591 1 80% 
C1 0.336 0 50% Actions 0.326 3 60% 
C3 0.280 0 100% C2 0.078 0 60% 
C2 0.012 1 60% C1 0.001 0 80% 

 
In the case of incidents involving stationary objects, the most probable initial 

action is the front brake activation in low speed (S2); the rider will most probably 
activate both brakes and conduct a minor maneuver in very low speed (C2) during the 
course of the incident. Finally, overtakes are strongly related to the initial action S3, 
that is accelerating at high speed, while conducting a minor maneuver. During the 
incident, there is a high probability of accelerating and executing 3 actions with the 
prevailing action being the acceleration (C3).  

CONCLUSIONS 
Risk hindering in the behavior of riders is a common consideration in PTW safety. 
Until now, riders’ behavior has been systematically studied through survey 
questionnaires and police reports, methods that may be biased, lacking critical 
information or encompassing errors and inaccuracies due to perception. Although 
current technological advances have fostered the conducting of naturalistic 
experiment that may provide very detailed information on the manner a rider behave 
on the road, little is still known on the manner a rider reacts to the emergence of a 
critical incident. The present paper proposes a methodology based on Bayesian 
Networks for identifying the riding behaviors that arise at the emergence of a critical 
incident based on high resolution monitored riding data (100Hz) consisting of 
information on wheel speed, throttle, steering, brake activation and associate them 
with typical types of incident such as incident involving a moving or stationary 
obstacle, overtake and incident involving traffic in the opposite direction of travel.  

Based on previous results which have shown that deviations from the mean 
riding behavior may efficiently be related to incidents with different levels of 
criticality with respect to rider’s risk (18), different behavioral patterns describing 
actions that govern the manner a rider reacts to external stimuli are revealed both for 
the onset of incident and during its duration. These patterns are mainly described by 
the interrelations between the riding variables that are related to the mechanical 
characteristics of the PTW, such as front and rear braking activation, throttle position, 
steering angle and wheel speed. Furthermore, the proposed methodology efficiently 
relates the observed patterns with four rough riding situations/incidents that are 
characterized by different initial actions and by different likelihood of actions 
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undertaken by the rider during the incident. These four riding patterns relate to the 
occurrence of moving or stationary obstacle, overtaking and the opposing traffic.  

The proposed methodology is purely probabilistic and compatible with the 
uncertainty hindering in the rider’s behavior. The revealed riding patterns may be 
explicitly distinguished. The latter associated with the fact that a very broad 
categorization of observed incidents has been proposed, results to a flexible 
characterization of riding behaviors at the emergence and during and incident. Further 
research is needed on the variability of the observed behavioral patterns across 
different riders and different riding settings.  
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