
 

Naturalistic Riding Experiment
•Conducted in the city and at the suburbs of Volos, a medium scale Greek city, 
•Period: November 2010 - April 2011. 
•BMW F650 Funduro
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Conclusions

High resolution riding data from a large-scale Power Two Wheeler's 
(PTW) naturalistic driving experiment are exploited in order to identify 
critical riding patterns emerging at the beginning and during an incident. 
A two-step analysis is adopted: first, a clustering approach is undertaken 
in order to reveal the critical rider’s actions at the beginning and during 
an incident. Second, the revealed actions are associated to specific 
riding situations in order to identify the critical riding patterns. Both 
methodological steps are modeled using Bayesian Networks. Results 
reveal three different prevailing riding actions for describing the onset of 
an incident and an equal number of actions that a rider executes during 
the course of an incident to avoid a crash. Furthermore, the proposed 
methodology efficiently relates the observed sets of actions with the 
different riding incidents and produce riding patterns (moving or 
stationary obstacle, overtaking and opposing traffic) that are 
characterized by different initial actions, as well as by different rider’s 
action likelihood during the incident.

Conceptual goals

The questions addressed:
1. When an incident occur and how long it lasts
2. What are the prevailing rider’s actions and their 

characteristics at the beginning and during an incident
3. According to how it starts and how it evolves, what type 

of incident it is

• The Automatic Detection Method is a simple and 
flexible methodology to detect incidents from massive 
datasets without taking the time to examine video.

• The Bayesian Analysis framework enables to identify 
the type of incident according to how it starts and how it 
evolves.

• The findings correspond to specific riders but the 
methodology is transferable.

• Actual risk was not identified as it was not observed.

Motivation and Objectives

Points of interest

All relevant approaches documented so far implement typical fixed 
driving/riding parameters’ thresholds – regardless of the type of rider 
and the type of area or other roadway of rider characteristics- and, 
based on those values, the incidents are extracted and further 
analyzed. 

This technique lacks consistency with the fact that each 
driver/rider has its personal stock of values, ideas, beliefs and 
practices, reflecting rigorously on its behavior on the road, such 
as the braking, overtaking and so on, that may not converge to a
“typical rider’s behavior”. 
The use of fixed thresholds to identify critical incidents severely 
biases the riding behavior that may be associated to the 
occurrence of a specific incident. 

Moreover, until now little is known on the manner a rider reacts to the 
emergence of a critical incident. 

There is no knowledge coming from data collected on the 
interrelations between braking, speeding and maneuvering under 
different riding or roadway conditions. 

The aim

Detect critical incidents from a multivariate set of riding parameters 
that define the riding characteristics of a specific using statistical 
approaches
Identify the riding behaviors that arise at the emergence of a critical 
incident based on high resolution monitored riding data (100Hz) from 
a naturalistic driving experiment. 

Methodological Framework

BMW F650 Funduro (University of Thessaly)

Variable Description 
Longitudinal acceleration (g) 

Linear acceleration (three components) Lateral acceleration (g) 
Vertical acceleration (g) 
Speed (km/h) Longitudinal speed 
Yaw rate (deg/s) 

Roll, yaw and pitch angles and rates Pitch rate (deg/s) 
Roll rate (deg/s) 
Throttle (%) Throttle position 
Brake Rear (%) Brake pressure rear 
Steering (%) Steering angle 
Brake activity Front (0/100) Brake activation front 
Brake activity Rear (0/100) Brake activation rear 
Wheel Speed (km/h) Speed of the rear wheel 

 

Node Binary mutual 
information (%) 

Binary relative 
significance 

Modal Value1

S1 (58.78%) 

Rear Brake Activation (0/100) 55.05% 1.00 100 100% 

Front Brake Activation (0/100) 41.51% 0.75 0 100% 

Throttle (%) 21.32% 0.39 <=2.47 (1/4) 81% 

Steering (%) 15.81% 0.29 <=0.42 (3/4) 81% 

Wheel Speed (kph) 4.35% 0.08 <=49.743 (2/4) 33% 
S2 (21.56%) 

Front Brake Activation (0/100) 73.12% 1.00 100 100% 

Wheel Speed (kph) 23.47% 0.32 <=33.45 (1/4) 57% 

Throttle (%) 18.31% 0.25 <=2.47 (1/4) 100% 

Rear Brake Activation (0/100) 7.61% 0.10 0 57% 

Steering (%) 4.64% 0.07 <=0.42 (3/4) 57% 
S3 (18.66%) 

Throttle (%) 79.25% 1.00 <=16.69 (3/4) 50% 

Rear Brake Activation (0/100) 27.39% 0.34 0 83% 

Steering (%) 14.78% 0.19 <=0.42 (3/4) 50% 

Wheel Speed (kph) 11.45% 0.14 >65.91 (4/4) 50% 

Front Brake Activation (0/100) 0.78% 0.01 0 67% 
1 Values in the parentheses are the ranges of variable discretization the modal value belongs to. 

Node Binary mutual 
information (%) 

Binary relative 
significance 

Modal Value1

C1 (43.65%) 

Steering (%) 24.32% 1.00 <=1.84 (3/4) 86% 

Rear Brake Activation (0/100) 21.53% 0.89 100 96% 

Throttle (%) 15.13% 0.62 <=5.56 (1/2) 99% 

Wheel Speed (kph) 11.45% 0.47 <=55.61 (3/4) 47% 

Front Brake Activation (0/100) 0.60% 0.03 100 71% 
C2 (36.98%) 

Steering (%) 73.21% 1.00 <=-0.94 (2/4) 52% 

Wheel Speed (kph) 54.71% 0.75 <=19.12 (1/4) 53% 

Front Brake Activation (0/100) 19.69% 0.27 100 95% 

Throttle (%) 13.24% 0.18 <=5.56 (1/2) 100% 

Rear Brake Activation (0/100) 0.94% 0.01 100 77% 
C3 (19.37%) 

Throttle (%) 78.40% 1.00 >5.56 (2/2) 91% 

Rear Brake Activation (0/100) 61.63% 0.79 0 100% 

Front Brake Activation (0/100) 51.62% 0.66 0 99% 

Wheel Speed (kph) 37.13% 0.47 <=55.61 (3/4) 91% 

Steering (%) 22.76% 0.29 <=1.84 (3/4) 98% 
1 Values in the parentheses are the ranges of variable discretization the modal value belongs to. 

Independent Dependent
Start (S1, S2, S3) 
Nr of actions (1, 2,…) 
Action C1 (0 if no, 1 if yes) 
Action C2 (0 if no, 1 if yes) 
Action C3 (0 if no, 1 if yes) 

Incident Category
• Stationary obstacle, 
• Moving obstacle, 
• Overtake, 
• Opposing Traffic.

 

Node Binary relative 
significance 

Modal Value Node Binary relative 
significance 

Modal Value 

Moving Obstacle (28.57%) Opposing Traffic (28.57%) 
Start 1 S1 90% Start 1 S1 90% 
Actions 0.542 2 40% C1 0.843 0 100% 
C3 0.067 0 90% Actions 0.768 1 70% 
C2 0.014 1 70% C2 0.180 1 80% 
C1 0.008 0 80% C3 0.074 0 90% 

Stationary Obstacle (28.57%) Overtake (14.29%) 
Start 1 S2 60% Start 1 S3 80% 
Actions 0.518 2 70% C3 0.591 1 80% 
C1 0.336 0 50% Actions 0.326 3 60% 
C3 0.280 0 100% C2 0.078 0 60% 
C2 0.012 1 60% C1 0.001 0 80% 

 

Data for Analysis
•Trips of 20 minutes duration made during a period of three 
months by one rider in rural two-way roads. 

•Route Specifications:
• shoulder width less than 1,2m, 
• rolling terrain and high curvatures, 
• mixed traffic conditions, 
• not equally distributed traffic across the two directions, 
• a significant number of uncontrolled access points and 

several zones where passing is permitted

• All trips were made in daylight with good visibility and fine 
weather conditions. 

•The final dataset consists of 56 trips of 20 minutes duration, 
meaning a set of time series of riding parameters with 6.72·106

data.

Instrumentation
•The available signals that are being stored are summarized in 
the Table. 
•video installation is available and calibrated to capture the 
frontal environment (a minimum of 90° field of view) and the 
rider’s face. 
•The data acquisition of all signals is set to be recorded at an 
accuracy of 100Hz except for video signals which are sampled 
at 10Hz and GPS position which can be sampled at 1Hz (values 
indicate minimal requirements). 

Recruiting
•3 riders for a period of 6 weeks each 
•Characteristics of participants:

• Male riders 
• riding experience of at least 5 years. 
• The age ranged from 24-38 years old.
• should ride a bike resembling that of the study vehicle, 

which was a BMW 650cc bike
• they should all be frequent PTW users 
• familiar with urban road environments and use PTWs for 

trips inside urban areas.

Other data acquisition
•travel diary; the questions and completion technique were 
described to them. 
•weekly debriefing interviews

Results

An example of a detected incident using the Mahalanobis distance metric. 

A single riding situation as detected by the distance metric time series using as multivariate 
input space the time –series of the mechanical related variables and all available variables. 
Any distance metric value above the 5% threshold value signifies an irregular behaviour.

Incident Detection (Algorithmic calibration)

•Three different models with respect to the different input space are 
further evaluated:

Model 1: steering, throttle, brake 
activation and wheel speed.

Model 2: linear acceleration and 
speed.

Model 3: All available variables.
•Variables directly connected to the mechanical characteristics were 
found adequate:

• Steering 
• Braking (front/rear activation and pressure)
• Throttle 
• Wheel speed

•Refinement strategy to eliminate noise
•The traffic related parameters (acceleration, speed) were not influential 
to the detection of incidents.

Automatic Incident Detection

•Concept: 
• Jointly consider 100Hz riding parameters time series
• detect the deviations from the mean behavior 
• nominate the occurrence of a deviation as the beginning of an 

incident. 
•The method

• from a clean subset of the multivariate data that can safely be 
presumed to be free of outliers, we test the “outlyingness” of the 
remaining points relative to the clean subset.

• Use a distance metric d to calculate the deviation from the mean riding 
behavior every t. 

The methodology is consistent to the complexity or rider’s behavior as it 
does not limit is generalization power to typical threshold values of riding 
parameters, but produces custom-made riding profiles and irregular riding 
patterns allowing the thresholds of extreme riding behavior to vary among 
riders based on their personal stock of values, ideas, beliefs and practices.

Bayesian Networks
•Computational intelligence models for reasoning under uncertainty by 
combining probability and graph theory

• probabilities act as a connector between simple parts that based on the 
graph theory form a complex modular system 

•Based on the idea of conditional dependence between variables and the 
updating of knowledge based on Bayes’s theorem. 
•The probability distributions are generally expressed in discrete form and are 
solved analytically
•Their probabilistic nature may explicitly account for uncertainties frequently met 
in dynamical systems. 
•They can integrate qualitative and quantitative information, and/or erroneous or 
missing data in the modeling.

Whoever knows the ways of Nature will more easily notice her deviations; and, 
whoever knows her deviations will more accurately describe her ways. 

F. Bacon (1620)
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For classification

For clustering

Mutual Information 
•To quantify for the conditional dependences  
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Riding dynamics  at the emergence of an incident

Riding dynamics  during  an incident

Detected Incidents Classification

3 critical types 
of actions 
describing the 
onset of an 
incident

3 critical types of 
actions during an 
incident 

Results from associating the type of the incident with specific riding actions 
at the occurrence and during the incident


