

Transport Research Arena Europe 2012

State-space based analysis and forecasting of macroscopic road safety trends in Greece

Constantinos Antoniou and George Yannis

National Technical University of Athens, Greece

Basic road safety figures, Greece 2001-2011 (1/2)

Basic road safety figures, Greece 2001-2011 (2/2)

- During the last decade, road fatalities in Greece have decreased by 42%, whereas serious injuries decreased by 50%
- The rate of fatalities per number of vehicles has decreased the same period by 63%
- This high fatalities rate is also explained by the high increase of the vehicle fleet in Greece during the same period
- Increase in Police enforcement was found correlated to the road fatalities decrease

Background

- The analysis of macroscopic road safety trends has received a lot of attention in the literature
- Using dedicated time series analysis techniques such as ARMAtype and state space modeling is recommended
 - These two types of models are not exclusive of one another as each type of model may also be written under different forms, and
 - equivalences between well-defined specifications have been empirically demonstrated.
- Reliable estimates of exposure (vehicle-kilometers) are not available for Greece
 - Suitable proxies, such as vehicles in circulation, GDP, or fuel consumption are considered

Methodology (1/2)

Seemingly unrelated time-series equations (SUTSE)

- Simpler model
- Also used as a diagnostic to determine whether more elaborate models would be useful
- Latent risk time-series model (LRT)
 - Without interventions
 - With interventions
- Model comparison
 - Non-nested models → Summary likelihood-based diagnostics unsuitable
 - Model quality tests (autocorrelation, heteroscedasticity, normality, transition correlations, ...)

Methodology (2/2)

- Data used in this research were extracted from:
 - the <u>CARE</u> database of the European Commission with disaggregate data on road fatalities,
 - the **Eurostat** database with aggregate statistics on all sectors
- Processing and analysis of these data took place within the <u>Dacota</u> EU co-funded research project (2010-2012)
- These results will be soon available at the European Road Safety Observatory of the European Commission (<u>www.erso.eu</u>).

Data Considered

Interventions in the fatalities:

•1986: financial crisis

•1991: "old-car-exchange" scheme

•1996: fatality recording change (24hr → 30 day)

Residual analysis for final LRT model

Validation Results

Forecasting Results

Conclusion

- Multivariate state-space models were developed for the analysis and forecasting of macroscopic road safety trends in Greece
 - Inclusion of exposure measures
 - Modeling of interventions
- Validation and forecasting results are presented
 - Useful in confirming that there is no overfitting
 - Comparisons with final actual data (2009-2010) indicate that the models perform properly, even in unusual situations, like the current strong financial crisis in Greece.

Directions for further work

Other functional forms and model specifications

 Additional parameters (e.g. GDP) to separate exogenous effects and isolate road safety trends

Comparison across countries and regions

Transport Research Arena Europe 2012

State-space based analysis and forecasting of macroscopic road safety trends in Greece

Constantinos Antoniou and George Yannis

National Technical University of Athens, Greece

