

ROAD SAFETY IMPROVEMENTS IN JUNCTIONS USING 3D LASER SCANNING

<u>Constantinos Antoniou</u>, Maria Tsakiri and <u>George Yannis</u> National Technical University of Athens

5th Panhellenic Road Safety Conference Volos, October 2012

Road Safety Conference 2012 - Volos 25/10/2012

Outline

- Background
- Motivation / Objective
- Methodology
- Application setup
- Results
- Conclusions/discussion

Background

- Human factors play an increasingly more central role in highway design
- Increase in the fidelity with which the road environment needs to be known
- The importance of true and precise 3D road geometry becomes very relevant in this context

Motivation / Objective

- 3D laser scanning is proposed as a tool to support the evaluation of the effectiveness of road safety measures at intersections
 - obtaining more detailed representations
 - ability to evaluate combinations of measures in conjunction
 - 3D laser scanning results in a full 3D model
- Demonstrate a practical example of implementing terrestrial laser scanning and imaging total station for road safety analysis

Methodology overview

Experimental design

Equipment selection

- Terrestrial laser scanner: Leica Scanstation 2
 - measurement range of 5-350m and point accuracy of 6mm
 - 50,000 points/sec
- Imaging total station: Topcon IS-203
 - Range up to 2000m
 - ±(2 mm + 2 ppm x D)
 - Scanning 20 points/sec
 - 2 digital cameras

Main processing steps

7

- Field data collection
 - Surveying measurements
 - Scanner/point cloud data acquisition
 - Image data acquisition
- Data registration
- Data processing and analysis
 - Geometric alignment and georeferencing
 - Noise reduction
 - Creation of ortho-images
 - Creation of 3D models

Data processing and analysis Scanner data

Examples of the data products

Examples of the data products

Detail of the 3D model

(a)

(b)

Conclusion

- 3D laser scanning is a powerful tool, which can have several applications in highway engineering and design
- The ability to construct a highly detailed model of the infrastructure at its actual current state is valuable as it can be used to monitor its condition
 - Particularly relevant in specialized structures, such as bridges and tunnels
 - Monitoring of the evolution of the physical structures (e.g. barriers) and plants
 - Pavement condition monitoring

Road Safety Conference 2012 - Volos 25/10/2012

Discussion

14

- 3D laser scanning can develop accurate 3D models with many possible applications, e.g.
 - Infrastructure condition monitoring
 - Specialized structures (bridges, tunnels, ...)
 - Pavement condition
 - Safety equipment (e.g. barriers)
 - Asset management
 - Contract management
 - Assessment of road safety measures
 - Incident clearance and investigation
- Mobile scanning is quickly becoming accessible
 - Which are the use cases in which the static equipment is still relevant?

Discussion (cont'd)

- 15
- In-depth accident investigation, assisting not only the detailed identification of accident causes but also the design of the appropriate countermeasures
- Combined effect of geometric and traffic control treatments at junctions
 - Combination of two cost-effective treatments
- Drive through the new layout (using available 3D techniques)
 - Allowing human factor assessments of the new layout prior to its construction

ROAD SAFETY IMPROVEMENTS IN JUNCTIONS USING 3D LASER SCANNING

<u>Constantinos Antoniou</u>, Maria Tsakiri and <u>George Yannis</u> National Technical University of Athens

5th Panhellenic Road Safety Conference Volos, October 2012