IMPACT OF METEOROLOGICAL FACTORS ON THE NUMBER OF INJURY ACCIDENTS

The 13th World Conference on Transport Research Julho 15- 18, 2013 Rio de Janeiro, Brasil

George Yannis, Associate Professor, NTUA Constantinos Antoniou, Assistant Professor, NTUA Dimitris Katsochis, Researcher-Manager, PLANET S.A.

Objectives

- Objective: exploration of meteorological indicators' (temperature and precipitation) impact on the number of total accidents and fatalities in the wider Athens area.
- ➢ Using <u>data</u> from:
 - the Hellenic Statistical Authority (EL.STAT.) [road accidents and fatalities]
 - the National Observatory of Athens (NOA) [daily average temperature and total precipitation];
 - combined with data from the Shimatari toll station
 - to the north of Athens [*monthly traffic data*].

Data

- Road accident / fatalities data:
 - for the period 1997-2005 (9 years / 108 months), in
 - the wider Athens area (Attica, Greece);
- are correlated with meteorological parameters:
 - Temperature (the same 108-month period);
 - Precipitation.

- Temporal correlation of accidents / fatalities with meteorological variables is examined through:
 - Generalized linear models (GLM) –a family of models including the negative binomial, Poisson and quasi-Poisson distributional assumptions;
 - Dynamic GLM (or state-space) models.

Data Organization

- Daily meteorological data (temp./ precip.):
 - as kept by NOA & NSSG;
 - undergone some processing.
- Monthly data:
 - Aggregate temperature and precipitation;
 - Toll station as a proxy to the entire traffic in the Athens area;
 - in an attempt to also consider exposure data.

Methodology

The selected data-set is split in two parts, using:

- a first part to fit the models and test estimation performance;
- a second part to validate models' predictive performance.
- Generalized linear models (GLM):
 - facilitate analysis of explanatory variables' effects resembling the analysis of covariates in a standard linear model;
 - with less confining assumptions; by specifying a *link function*;
 - linking the systematic component of the linear model with a wider class of outcome variables and residual forms;
 - model defined through a set of independent random variables, each with a distribution from the exponential family.
- Dynamic GLM (or state-space / SS) models:
 - A certain form of SS models; run at this context using the
 - **Poisson distribution and log link for the dependent variable;**
 - and as GLM (using Poisson distribution with a log link function).

Dynamic Generalized Linear Model / DGLM (1/2)

- Approach selected as:
 - it allows explicit modelling of <u>serial</u> <u>correlation</u>;
 - <u>measurement equation</u> distributions fall within the exponential family.
- Explanatory variables:
 - binary (0/1) variable with value of "1" if min. mean temp. of one day in a month was less than 5 C;
 - <u>sum of total precipitation</u> during a month (mm);
 - <u>number of heavy trucks</u> passing from the toll station during a month;
 - number of motorized twowheelers.

Time varying intercept (incl. loess-fitted trend curve)

Dynamic Generalized Linear Model / DGLM (2/2)

- Time-varying intercept:
 - loess-fitted trend line;
 - for illustration purposes of the decreasing trend.
- Unstructured seasonal pattern in the form of:
 - month-specific seasonal components;
 - verifying a lower number of accidents during the summer months;
 - possibly due to low exposure and improved weather conditions; and
 - comparatively more accidents during winter;
 - possibly due to inclement weather conditions.

GLM – Poisson assumption (1/2)

- Model estimation results:
 - a model without dummies for the months is presented first;
 - followed by a model with month dummies.

	GLM Poisson (glm1.p)		GLM Poisson with month dummies (glm2.p)	
	Coef.	t-test	Coef.	t-test
Intercept	6.119	155.165	6.057	147.94
Min Temp < 5oC	4.851x10-2	3.549	1.934x10-2	1.322
Total Precip.	1.602x10-4	2.14	1.118x10-4	1.324
Heavy Trucks	-9,891x10-3	-8.387	-8.263x10-3	-6.810
Motor.2wheel.	1.863x10-3	42.163	1.882x10-3	41.787
Dummy Jan	N/A		7.207x10-2	5.079
Dummy Aug	N/A		-2.111x10-3	-2.068
Dummy Dec	N/A		6.198x10-2	3.921
Null deviance	2669.6	(95 d.o.f.)	2669.6	(95 d.o.f.)
Residual deviance	391.54	(91 d.o.f.)	352.0	(88 d.o.f.)
AIC	1222.3		1188.8	

The 2nd model (month dummies) somewhat approximates the seasonal components of the state-space model.

GLM – Quasi-Poisson assumption (2/2)

- Model estimation results:
 - the same structuring process as under Poisson assumption;
 - again, the model with month dummies approximates SS model better.

	GLM quasi-poisson (glm1a.p.disp)		GLM quasi-poisson with month dummies (glm2.p.disp)	
	Coef.	t-test	Coef.	t-test
Intercept	6.107	72.877	6.043	72.072
Min Temp < 5oC	5.316x10-2	1.932	2.079x10-2	0.718
Total Precip.			1.251x10-4	0.730
Heavy Trucks	-9.647x10-3	-3.982	-8.507x10-3	-3.468
Motor.2wheel.	1.83x10-3	20.341	1.925x10-3	20.611
Dummy Jan	N/A		7.013x10-2	2.430
Dummy Aug	N/A		-2.360x10-3	-1.098
Dummy Dec	N/A		6.460x10-2	1.959
Null deviance	605.372	(95 d.o.f.)	649.594	(95 d.o.f.)
Residual deviance	91.335	(92 d.o.f.)	86.958	(88 d.o.f.)
AIC	280.26		296.69	

The coefficients for most (but not all) parameters are significant at the 95% level.

Estimation / prediction accuracy of models (1/2)

- General remarks:
 - various GLM models show similar estimation and prediction performance;
 - models not modelling over-dispersion correctly underestimate standard errors and may give false positive indication of some values' significance.

RMSPE	Estimation	Prediction
State Space model	0.0386	0.0461
GLM Poisson (glm1.p)	0.0727	0.0984
GLM Poisson – month dummies (glm2.p)	0.0684	0.0914
GLM quasi-Poisson(glm1a.p.disp)	0.0730	0.0981
GLM quasi-Poisson – month dummies (glm2.p.disp)	0.0685	0.0948

Dynamic GLM/state-space models show a considerably improved performance over the GLM models.

Use of the RMSPE metric reveals satisfactory performance, with an estimation error between ~ 7% (GLM) and <4% (state-space model).</p>

Estimation / prediction accuracy of models (2/2)

Visual representation confirms models' quantitative results:

- reasonable differentiation across months within a year;
- June yields more accidents than autumn period months, probably because more vehicle-km are driven on most road networks during early summer;
- it appears that low temperature corresponds to some reduction of recorded accidents (mostly in winter);
- the same is the case as total precipitation increases, probably due to reduced mobility under rainy weather.

Concluding remarks (1/2)

- Models solely built around meteorological variables only demonstrate limited potential in interpreting trends and may only be used as indicative descriptive tools.
- Model diagnostics and goodness-of-fit measures demonstrate the explanatory and predictive power of the more involved dynamic GLM models (DGLM / SS).
- In terms of predictive performance, the error is <10% for the GLMs and well below 5% for the state-space model.</p>
- These rather simple models demonstrate a reasonable differentiation across months within a year, with:
 - June yielding more accidents than each month of the autumn period;
 - probably because more vehicle-km are driven on most road networks during early summer.

Concluding remarks (2/2)

- Better understanding of the subtle difference among different model functional forms can yield more reliable forecasts.
- Models that can accurately assess the impact of meteorological parameters on traffic safety can help establishing base-line conditions, to assess safety measures & campaigns' performance.
- Recommendations for practical use of results may include:
 - shaping public policy/measures (e.g. VMS operation under rain);
 - strengthening focused road safety campaigns (e.g.

lights/tyres; significance of car service, overall).

IMPACT OF METEOROLOGICAL FACTORS ON THE NUMBER OF INJURY ACCIDENTS

	Apoio
	COPPE UFBU
	Patrocinadores
@CNP q	Fundsolo Carpersion
FIN	AGETRANSP

