CONTROLLING CREST VERTICAL CURVATURE RATES BASED ON VARIABLE GRADE STOPPING SIGHT DISTANCE CALCULATION

Stergios Mavromatis, Assistant Professor Technological Educational Institute of Athens stemavro@teiath.gr

> Nikiforos Stamatiadis, Professor University of Kentucky nick.stamatiadis@uky.edu

Basil Psarianos, Professor National Technical University of Athens psari@survey.ntua.gr

George Yannis, Professor National Technical University of Athens geyannis@central.ntua.gr

Stopping Sight Distance (SSD)

Highway Geometric Design Element of Fundamental Importance

- > must be provided at every point along the road surface
- affects critical road design parameters (e.g. vertical curvature)
 - ✓ impose economic considerations on new road designs and road improvement projects

Grade Impact in SSD Calculation

Based on AASHTO's Design Guide (Green Book)

- significant difference in SSD between upgrades and downgrades
- regarding vertical curves, the grade effect is somewhat balanced and there is no need to adjust SSD due to grade
- Moreover, the Green Book states ...the minimum lengths of crest vertical curves, based on sight distance criteria, generally are satisfactory from the standpoint of safety, comfort and appearance.

implying that the vertical curvature rate is adequately determined through the suggested control values

Objective

- Investigate the Sufficiency of the Suggested Crest Vertical Curvature Rates by AASHTO from the Grade Control Point of View
 - Current definition is based on a level road surface
 - maximum grade values vary depending on the road's functional classification

Current SSD Determination

$$SSD = V_o t_{pr} + \frac{V_o^2}{2g(\frac{a}{g} + s)}$$

where :

V_o (m/sec) : vehicle initial speed

t_{pr} (sec) : driver's perception – reaction time [2.5sec; AASHTO, 2011]

g (m/sec²) : gravitational constant [9.81m/sec² (32.2ft/sec²)]

a (m/sec²) : vehicle deceleration rate [3.4m/sec² (11.2ft/sec²); AASHTO, 2011]

s (%/100) : road grade [(+) upgrades, (-) downgrades]

Current Crest Vertical Curvature Determination

 $L = 2SSD - \frac{200(\sqrt{h_1} + \sqrt{h_2})^2}{s_2 - s_1}$

SSD≤L

SSD>L

where :

- **K**: vertical curvature rate (m)
- L: length of vertical curve (m)
- SSD: stopping sight distance (m)
- h₁: driver eye height (m) [1.08m (3.50ft); AASHTO 2011]
- h₂: object height (m) [0.60m (2.00ft); AASHTO 2011]
- s₁, s₂: grade values (%)

CVCR Calculation Approaches

D 2D Approach

- Fragmented approach
- In Current Practice, Grade Effect is Addressed through Various Considerations
 - > RAA (2008)

 ✓ values used for the crest vertical curvature rate determination are reached for most unfavorable (negative) grade values

> OMOE-X (2001)

+10km/h safety margin in the CVCR calculation

AASHTO Design Control Values for SSD and Crest Vertical Curvature Rates (CVCR)

	1etric		US Customary				
V _{design} (km/h)	SSD (m)	K (m)	V_{design} (mph)	SSD ^(ft)	K (ft)		
50	65	7	30	200	19		
60	85	11	40	305	44		
70	105	17	45	360	61		
80	130	26	50	425	84		
90	160	39	55	495	114		
100	185	52	60	570	151		
110	220	74	70	730	247		
120	250	95	75	820	312		
130	285	124	80	910	384		

BRAKING CALCULATION ON VARIABLE GRADES (

Current Practice

constant grades

$$SSD = V_o t_{pr} + \frac{V_o^2}{2g(\frac{a}{g} + s)}$$

variable grades

✓ balanced assumptions

- mean grade value adopted
- failure in delivering actual braking results (SSD<L)

BRAKING CALCULATION ON VARIABLE GRADES (

 $\left(\frac{a}{g} + s_i\right)t^2$

Suggested Approach

variable grade impact during braking

$$V_{i+1} = V_i - g(\frac{a}{g} + s_i)t$$
 $BD_i = V_i t - \frac{1}{2}g(\frac{a}{g})t$

$$SSD = V_o t_{pr} + \sum BD_{k-1}$$

where :

 $V_{i+1} \ (m/sec)$: vehicle speed reduced by the deceleration rate for t=0.01sec

t (sec) : time fragment (t = 0.01sec)

 s_i (%/100) : road grade in i position [(+) upgrades, (-) downgrades]

 $BD_{i}\left(m\right)$: pure braking distance

V_o (m/sec) : vehicle initial speed

 $\sum BD_{k-1}(m)$: total vehicle pure braking distance for the initial value of vehicle speed

BRAKING CALCULATION ON VARIABLE GRADES (3/5)

\Box V_{design}=70_{km/h} (45_{mph}), SSD= 105_m (360_{ft}), K=17_m (61_{ft})

BRAKING CALCULATION ON VARIABLE GRADES (4/5)

V_{design} = 45_{mph} (70_{km/h})

Ending Grade Value (%)

SUGGESTED CVCR $[V_{design} = 50_{mph} (80_{km/h})]$

Road's Functional Classification

Exit Grade Value

	Type of	Df AASHTO Exit Grade Value (%)								
	Terrain	ААЗПІО	-3	-4	-5	-6	-7	-8	-9	-10
_	Level						-	-	-	_
<u>r</u>	Rolling		27m	28m	29m	30m	31m	32m	_	_
l Rura		26m	(L>132m)	(L>134m)	(L>136m)	(L>139m)	(L>142m)	(L>144m)	33m (L>147m)	35m (L>151m)
l a	Mountainous	84ft	88ft	91ft	95ft	98ft	102ft	106ft		
Local			(L>436ft)	(L>443ft)	(L>451ft)	(L>459ft)	(L>468ft)	(L>478ft)	111ft (L>488ft)	115ft (L>498ft)
	Level						-	_	_	
L S I	Rolling		27m	28m	29 m	30 m	31m	_	_	
Rural Collectors		26m	(L>132m)	(L>134m)	(L>136m)	(L>139m)	(L>142m)	32m (L>144m)	33m (L>147m)	
1 2 ≤	Mountainous	84ft	88ft	91ft	95ft	98ft	4000			
3			(L>436ft)	(L>443ft)	(L>451ft)	(L>459ft)	102ft (L>468ft)	106ft (L>478ft)	111ft (L>488ft)	
	Level				-			(L>4/01)	(L>40011)	
S	Rolling		27m	28m	00	-	-			
Rural rterials		26m	(L>132m)	(L>134m)	29m (L>136m)	30 m	31m			
Rural rteria					(L>13011)	(L>139m)	(L>142m)	-	-	-
2 Y	Mountainous	84ft	88ft	91ft	95ft					
⋖			(L>436ft)	(L>443ft)	(L>451ft)	98ft	102ft			
						(L>459ft)	(L>468ft)			

metric units (m)

US customary units (ft)

SUGGESTED CVCR $[V_{design} = 50_{mph} (80_{km/h})]$

Road's Functional Classification

Exit Grade Value

		Type of	AASHTO	Exit Grade Value (%)							
		Terrain	ААЗПІО	-3	-4	-5	-6	-7	-8	-9	-10
		Level							-	_	_
	Urban Collectors	Rolling		27m	28m	29m	30 m	31m	32m	-	-
		_	26m	(L>132m)	(L>134m)	(L>136m)	(L>139m)	(L>142m)	(L>144m)	33m (L>147m)	35m (L>151m)
L		Mountainous	84ft	88ft	91ft	95ft	98ft	102ft	106ft		
	ŭ			(L>436ft)	(L>443ft)	(L>451ft)	(L>459ft)	(L>468ft)	(L>478ft)	111ft (L>488ft)	115ft (L>498ft)
	Urban Arterials	Level						-	_		
		Rolling		27m	28m	29 m	30 m	31m	_	_	
L		_	26m	(L>132m)	(L>134m)	(L>136m)	(L>139m)	(L>142m)	32m (L>144m)	33m (L>147m)	-
L		Mountainous	84ft	88ft	91ft	95ft	98ft	102ft			
				(L>436ft)	(L>443ft)	(L>451ft)	(L>459ft)	(L>468ft)	106ft (L>478ft)	111ft (L>488ft)	
		Level				-	_				
	٧s	Rolling		27m	28m	29m	-				
	Freeways	_	26m	(L>132m)	(L>134m)	(L>136m)	30m (L>139m)	-	-	-	-
	ě	Mountainous	84ft	88ft	91ft	95ft					
	ш			(L>436ft)	(L>443ft)	(L>451ft)	98ft				
							(L>459ft)				

metric units (m)

US customary units (ft)

Conclusions

Consequence Investigation of Green Book Guidelines to Adopt Control CVCR based on Leveled Grade Values

SSD Calculation on Variable Grades

 point mass model, laws of mechanics
vevaluate negative grade area of crest vertical curves

Conclusions

Wide Range of Design Speed Values

- > amended CVCR
 - ✓ based on ending grade value
 - ✓ length of the vertical curve exceeds SSD

Ready-to-Use CVCR

in accordance to roadway's functional classification

(2/2)

Further Research

- Assess the Impact of Combined Horizontal – Vertical Alignment
- Additional Qualitative Research in Current Vehicle Dynamics Trends
 - valuate parameters of SSD
 - ✓ braking on curves
 - ✓ ABS braking
 - ✓ friction coefficient etc.
- Human Factor might Impose Additional Restrictions

Parameters Refer to Daylight Driving Conditions

