Driving performance profiles of drivers with Parkinson's disease

Dimosthenis Pavlou1, Eleonora Papadimitriou1, Sophia Vardaki1, Panagiotis Papantoniou1, Nikolaos Andronas2, George Yannis1, John Golias1 and Sokratis G. Papageorgiou2

1Department of Transportation Planning and Engineering, National Technical University of Athens, Athens, Greece
2University of Athens, 2nd Department of Neurology, “Attikon” University General Hospital, Athens, Greece
OVERVIEW

• Background
• Objectives
• Experiment Design
• Data and analysis methods
• Results
• Conclusions - Discussion

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
Driving requires the ability to **receive** sensory information, **process** the information, and to **make proper, timely judgments** and responses.

Various motor, visual, cognitive and perceptual deficits can affect the ability to drive and **lead to reduced driver fitness and increased crash risk**.

More specifically, diseases **affecting a person's brain functioning** (e.g. Parkinson’s disease) may significantly impair the person's driving ability.
• Parameters associated with driving performance are reaction time, visual attention, speed of perception and processing, and general cognitive and executive functions.

• These parameters show considerable decline with age and especially at the presence of Parkinson’s disease lead to deterioration in driving performance and are associated with the increased probability of accident involvement.
OBJECTIVE OF THE RESEARCH

The objective of this research is to present and analyze the driving performance profiles of drivers with Parkinson’s disease (PD), on the basis of a driving simulator experiment, in which healthy and PD participants drive in different driving scenarios.
EXPERIMENT DESIGN

- **Distract** research project
- **Neurologists - Medical/neurological assessment:**
 - administration of a full clinical medical, ophthalmological and neurological evaluation
- **Neuropsychologists - Neuropsychological assessment:**
 - administration of a series of neuropsychological tests and psychological - behavioural questionnaires to the participants which cover a large spectrum of Cognitive Functions
- **Transportation Engineers - Driving at the simulator**

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr

http://www.nrso.ntua.gr/distract/
“DRIVING AT THE SIMULATOR”

- Concerns the **assessment of driving behaviour** by means of programming of a set of driving tasks for different driving scenarios
- **Quarter-cab driving simulator** manufactured by the FOERST Company
- **3 LCD wide screens** 42” (full HD: 1920x1080 pixels)
 - total field of view 170 degrees
- **Validated** against a real world environment
- At first, **one practice drive** (usually 10-15 minutes)

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
RURAL SESSION

• **2.1 km long**, single carriageway, 3m lane width, zero gradient, mild horizontal curves

• 2 traffic scenarios examined:
 • **Low traffic** conditions ($Q_L = 300$ vehicles/hour)
 • **High traffic** conditions ($Q_H = 600$ vehicles/hour)

• 2 unexpected incidents are scheduled to occur:
 • sudden appearance of an animal (deer or donkey) on the roadway

• Analyzed by **Generalized Linear Model** (GLM)

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
MOTORWAY SESSION

Motorway scenario

- Firstly a period of **low-demand driving** (right lane, straight ahead)
- Afterwards, the subject is negotiating the **road work segment**
 - All drivers made a **double lane change** that involved driving through a road work section containing large blocks (barriers) on each side of the road, causing the road to **progressively narrow** (1:20 taper ratio; lane width 3m)
DATA AND ANALYSIS METHODS

Sample size
• 62 participants (36 males)
• 41 “healthy controls” (64.1 y.o. ±8.1)
• 21 PD patients (65.3 y.o. ±6.9)

Driving performance measures
• Mean speed
• Time Headway
• Lateral position (+variability)
• Wheel steering angle (+variability)
• Reaction time at unexpected incident
• Accident probability (inside the work segment)

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
RESULTS - SPEED AND HEADWAY

PD drivers drive at significant slower speeds (20% lower speed overall)

- The traffic volume seems to have the same effect on all participants

PD drivers keep statistically significant larger time headways

- The higher traffic volume seems to affect more the PD group

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>B</th>
<th>Std. Error</th>
<th>95% Wald Confidence Interval</th>
<th>Wald Chi-Square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>42.78</td>
<td>1.05</td>
<td>40.71, 44.84</td>
<td>1651.68</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>PD QL</td>
<td>-6.36</td>
<td>2.05</td>
<td>-10.38, -2.35</td>
<td>9.64</td>
<td>1</td>
<td>0.002</td>
</tr>
<tr>
<td>PD QH</td>
<td>-8.72</td>
<td>2.05</td>
<td>-12.74, -4.71</td>
<td>18.12</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>Controls QL</td>
<td>2.61</td>
<td>1.52</td>
<td>-0.37, 5.59</td>
<td>2.95</td>
<td>1</td>
<td>0.086</td>
</tr>
<tr>
<td>(Scale)</td>
<td>58.72</td>
<td>7.02</td>
<td>46.45, 74.22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>B</th>
<th>Std. Error</th>
<th>95% Wald Confidence Interval</th>
<th>Wald Chi-Square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>28.58</td>
<td>3.86</td>
<td>21.02, 36.15</td>
<td>54.87</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>PD QL</td>
<td>72.01</td>
<td>7.51</td>
<td>57.29, 86.73</td>
<td>91.89</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>PD QH</td>
<td>26.72</td>
<td>7.51</td>
<td>12.00, 41.45</td>
<td>12.66</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>Controls QL</td>
<td>20.75</td>
<td>5.57</td>
<td>9.84, 31.67</td>
<td>13.90</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>(Scale)</td>
<td>789.29</td>
<td>94.3279</td>
<td>624.38, 997.53</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dependent Variable: Speed
Model: (Intercept), ID
a. Set to zero because this parameter is redundant.
b. Maximum likelihood estimate.

Dependent Variable: Time Headway
Model: (Intercept), ID
a. Set to zero because this parameter is redundant.
b. Maximum likelihood estimate.
RESULTS - LATERAL POSITION

- PD drivers tend to drive “to the left” at low traffic volume
- High traffic volume leads to more conservative driving

- PD drivers have difficulty in positioning the vehicle inside the lane in low traffic volume

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>B</th>
<th>Std. Error</th>
<th>95% Wald Confidence Interval</th>
<th>Wald Chi-Square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.60</td>
<td>0.02</td>
<td>1.56 - 1.64</td>
<td>7637.80</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>PD Q_{L}</td>
<td>-0.16</td>
<td>0.04</td>
<td>-0.23 - 0.09</td>
<td>19.24</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>PD Q_{H}</td>
<td>-0.06</td>
<td>0.04</td>
<td>-0.13 - 0.01</td>
<td>2.91</td>
<td>1</td>
<td>0.088</td>
</tr>
<tr>
<td>Controls Q_{L}</td>
<td>-0.11</td>
<td>0.03</td>
<td>-0.17 - 0.06</td>
<td>18.34</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>Controls Q_{H}</td>
<td>0</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Scale)</td>
<td>0.018^{a}</td>
<td>0.002</td>
<td>0.014 - 0.022</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Set to zero because this parameter is redundant. b. Maximum likelihood estimate.

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>B</th>
<th>Std. Error</th>
<th>95% Wald Confidence Interval</th>
<th>Wald Chi-Square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.26</td>
<td>0.01</td>
<td>0.24 - 0.27</td>
<td>949.440</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>PD Q_{L}</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01 - 0.08</td>
<td>8.064</td>
<td>1</td>
<td>0.005</td>
</tr>
<tr>
<td>PD Q_{H}</td>
<td>0.00</td>
<td>0.02</td>
<td>-0.03 - 0.04</td>
<td>0.186</td>
<td>1</td>
<td>0.673</td>
</tr>
<tr>
<td>Controls Q_{L}</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01 - 0.05</td>
<td>5.483</td>
<td>1</td>
<td>0.019</td>
</tr>
<tr>
<td>Controls Q_{H}</td>
<td>0</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Scale)</td>
<td>0.004^{b}</td>
<td>0.0004</td>
<td>0.003 - 0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Set to zero because this parameter is redundant. b. Maximum likelihood estimate.

Dependent Variable: Lateral Position
Model: (Intercept), ID

Dependent Variable: Lateral Position Variability
Model: (Intercept), ID

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
RESULTS - STEERING ANGLE

- PD participants in low traffic volume tend to turn the wheel “to the left” compared with the control group.

- PD participants have higher variability in wheeling angle compared with the control group in both traffic volumes.

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
PD drivers have **statistically worse reaction times** in all traffic environments

(30% **worse** reaction times overall)

- The **higher is the traffic volume** the worse is the reaction time for PD participants
- Traffic volume does not affect reaction time of the control group

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
RESULTS - MOTORWAY SESSION

• Inside the work segment, although PD patients drive 15% lower than control group, their accident probability is 3 times higher

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
CONCLUSIONS - DISCUSSION 1/2

PD drivers (compared to the control group) were found to:

- drive at significantly lower speeds
- keep large headways
- have significantly worse reaction times (even worse if the driving environment difficulty level increases)
- have difficulties in positioning the vehicle inside the lane
- tend to drive to the left double borderline
- have 3 times higher accident probability inside a work-zone segment that demands a simple manoeuvre

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
CONCLUSIONS - DISCUSSION 2/2

• Overall, the deterioration of the driving performance of PD patients is confirmed and analyzed with mathematical models by the present study.

• The results are to be considered within the limited context of driving simulator studies - driving performance is known to be more accurately and reliably estimated by means of on-road studies.

• However, the relative effects of patients vs healthy drivers are known to be quite identifiable in simulator studies.

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
DRIVING PERFORMANCE PROFILES OF DRIVERS WITH PARKINSON’S DISEASE

Dimosthenis Pavlou¹, Eleonora Papadimitriou¹, Sophia Vardaki¹, Panagiotis Papantoniou¹, Nikolaos Andronas², George Yannis¹, John Golias¹ and Sokratis G. Papageorgiou²

¹Department of Transportation Planning and Engineering, National Technical University of Athens, Athens, Greece
²University of Athens, 2nd Department of Neurology, “Attikon” University General Hospital, Athens, Greece